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INTRODUCTION

Let F' be a non-archimedean local field. Let m be a smooth irreducible representation
of GL,, (F'). By the local Langlands correspondence there exists an nth dimensional rep-
resentation p (m) of the Weil-Deligne group Wi, associated to 7. The local exterior square
L-function of 7 is defined via this correspondence as L (s, 7, A%) = L (s, A? (p(m))). We will
be only interested in the case where n is even.

In [JS90], Jacquet and Shalika study the global exterior square L-function for irreducible
automorphic cuspidal representations on GL,,, mainly for the case where n is even. In Section
7 of [JS90], Jacquet and Shalika give an integral representation for the local exterior square
L-function, for unramified irreducible representations of GLa,, (F'). On the other hand, in
[Sha90] in Section 7, Shahidi proposes another potential construction for this L-function,
via the Langlands-Shahidi method. In [KR12|, Kewat and Raghunathan show that these
three constructions for the local exterior square L-function agree, for all smooth irreducible
representations of GLs, (F) [KR12, Theorem 1.4].

In [Mat14], Matringe proves the corresponding local functional equation. This functional
equation is already proved by Kewat and Raghunathan in their paper [KR12| using global
arguments. Matringe’s proof uses only local arguments.

In this work, we discuss the local non-archimedean theory corresponding to the Jacquet-
Shalika integral mentioned above. In Theorems A-D mentioned below, we give a survey for
known results of this theory. We follow the proofs of Jacquet and Shalika, and of Matringe,
and add details to the original proofs. Our contributions are the theories and the theorems
that appear after Theorem D, although these might be known to the experts of the field.

We now present the main theorems that we prove.

The theory over a p-adic field. Let I’ be a p-adic field. Let 7 be an irreducible smooth
generic representation of GLa,, (F).

Theorem (A). There exists r, 2 € R, such that for every s € C, with Re(s) > rya2,
W eW (m ), ¢ € S(F™), the following integral converges absolutely

st wor= [ o w (wn (R) (%)) P X)X o detl do
N\CLm (F) J o\ Mim (F) m g

Theorem (B). There exist W € W (m,v), ¢ € S(F™), such that for every s € C, with
Re (s) > 75 p2,

me (8, W, §Z§) =1.

We follow the proofs of Jacquet and Shalika in |[JS90, Sections 7.1, 7.3] for Theorems A
and B.

Theorem (C). For a fited W € W (m,¢), ¢ € S(F™), the function J. (s, W, ¢) results in
an element of C (q¢~°) in the convergence domain, and therefore has a meromorphic contin-
uation. Furthermore, denote

Iy = spang {Jry (s, W, 0) | W e W(m,¢), 6 € S(F™)},

then there exists a unique p (z) € C|z], such that p(0) =1 and I, =

does not depend on 1. We denote L (s, 7, \?) = p(ql_s).
5
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Kewat and Raghunathan denote Ljg (s, 7, A?) = zﬁ’ and show that every smooth irre-
ducible generic representation 7, L;s (s, 7, A?) is the same function as the one constructed
via the local Langlands correspondence (this is shown by Jacquet and Shalika only for un-
ramified representations).

As a result of Theorem C, Jr, (s,W,¢) has a meromorphic continuation to the entire
complex plane, which we keep to denote as Jr (s, W, ¢).

Assume from now and on that 7 is supercuspidal. We prove the following theorems.

Theorem (D). There exists an element v (s) € C(q™°), such that for every ¢ € S (F™),
W e W (m,), one has

Tzt (1 — 8,7 (([m [m)) W¢) = Y (8) - Trp (8, W, 9) .

L(1—s,7,A?%)
L(s,m,A2) "~

where €, (8) is an invertible element of C[q*, ¢%].

Furthermore,

Ve (8) = Empp () -

We follow the proof of Matringe [Mat12, [Matl14] for Theorem D.

Theorem (E). The following are equivalent.
(1) wy =1 and there exists W € W (m,v), such that

ley (W) = / / W (wm,m (I’” }X) (9 )) W (—trX) dXdg # 0.
ZN\CLm () J g\ Mm (F) m g

(2) Y (8) has a pole at s = 1.
(3) L(s,m A?) has a pole al s = 0.

We prove Theorem E using the functional equation, which was discussed in Theorem D. A
variation of this theorem is already known for Shahidi’s construction of the exterior square
L function (see the introduction of [JNQO§| and Theorem 5.5 of the same paper).

Theorem (F). If w, is ramified, then L (s,m,A\*) = L (ms,w,) = 1. If w, is unramified then

L(smnd) = ] !

1 )
keSry L —wr (@)™ CFg®

2mi

where ( = em and

Sﬁﬂﬁ:{ogkgm—lHWeW(ﬂﬂ/))?

[l o (= £ ))etowioron)ons ™355 )

The theory over a finite field. We also develop an analogous theory corresponding to
Jacquet-Shalika integral, over a finite field F,. Our main results are the following.

Let 7 be an irreducible generic representation of GLay, (IF,).
6



Theorem (B’). There exist W € W (m,¢) and ¢ € S (IF;”), such that

L=l W)= G ML E o )W(wm,m (= )

geN\GLm(]Fq) XEB\IVIm(]Fq
P (=trX) - d(eg).

Assume from now and on that 7 is cuspidal.

Theorem (D). Suppose that m does not admit a Shalika vector. Then there exists a constant
Ve € C*, such that for every W e W (m,¢), p € S (IF?), one has

i Jrs W0) = (7 (1)) 7.0)

Let 0 : Flz,, — C* be a regular character associated with 7.

Theorem (E’). The following are equivalent:

(1) There exists W € W (m, 1), such that Jr . (W, 1) # 0.
(2) 7 admits a Shalika vector.

(3) 9 rF;7nE 1
We give an expression for v, for m = 1,2, in terms of 6.

Theorem (G). Suppose that 0 | o # 1 (i.e. ™ doesn’t admit a Shalika vector). Then

(1) Form =1,
Ve = ZWW —a).

acFy

(2) Form =2,

=T [ Y w @ (o) | [ Y >y ut <+TrF4/Fq(§+g>>9(§) ,

a€F; beF: ¢eFr,  PeF;
NF_4/%q (5) b

-1 w, =1
where Ty = 1=q ¢ .
0 wr E 1

Relating the theories. We conclude this work, by relating the above theories correspond-
ing to Jacquet-Shalika integral, using level zero (depth zero) representations. Our main
results are the following theorems:

Theorem (H). Let (mg, Vz,) be an irreducible cuspidal representation of GLa, (F,), and let
7 be a level zero representation of GLay, (F), constructed through my. Then for every v € V.,
peds (]F;"), seC

‘]Wﬂlf (S’ W, F¢) = ‘]Woﬂﬁo (Wz?v ¢) + Jﬂo,iﬁo (Wz?v ) ¢ (0) W (w) ~q "L (ms, WW) .

As a result, we get a modified version of the functional equation for all cuspidal irreducible

representation 7 of GLy,, (F,), regardless whether they admit a Shalika vector or not:
7



Theorem (D). There exists an element vz (s) € C(¢7*), such that for every ¢ € S (FI'),
W eW (m,¢), s € C, one has

Jrp-1 (7? <(Im Ln)) w, 925) + ey (W, 1) - 6(0) - g™ 9L (m(1—s),1) =
Vs ()« (Jowp (W, 0) + Jray (W, 1) - ¢ (0) - g™ L (ms, 1)) .

Furthermore, if m admits a Shalika vector then
qmsL(m(l _8)71)
g®  L(ms, 1)

Vo (8) =

Otherwise, vy, (s) € C*.
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1. THE JACQUET-SHALIKA INTEGRAL

Towards this section, F' is a finite field or a p-adic field. In the case that F' is a finite field,
1 a#0

a =

we denote for a € F, |a| = the trivial absolute value. In the case that F'is a

p-adic field, we denote by |a| the absolute value of a.

For an [-group G and a vector space V over C, we denote by S (G, V') the space of Schwartz
functions on G having values in V' (smooth functions f : G — V with compact support). We
also denote S (G) = S (G, C). Note that if G is a finite group then S (G) = {f : G — C},
SGV)={f:G—=V}

1.1. Preliminaries.

1.1.1. Whittaker model. Let n be a positive integer, G = GL,, (F).
Given a non-trivial character ¢ : ' — C*, we define a character, also denoted 1), on the
upper triangular unipotent matrix subgroup N of G by

1 aq *
1 ay = * 1
(U LT % :@b( akz)-
1 a,, k=1
1

Let 7 be a (smooth) representation of G. 7 is called generic if Homg (m, Ind§ (1)) # 0.
It is known that supercuspidal (cuspidal if F' is finite) representations are generic (|[BZ76),
Proposition 5.15.a]).

It is known that if 7 is irreducible and generic, then dim Homg (7, Ind§ (v)) = 1 (|BZ76,
Theorem 5.16|, [Bum| Theorem 6.1]). In this case, we denote by W (7, 1) the unique subspace
of Ind§ (1) which is equivalent to 7. This is called the Whittaker model of 7 with respect
to .

It is known that for an irreducible representation 7 of G, the contragredient representation
7 is isomorphic to 7! where 7! (g) =7 (gl) and ¢' = (gfl)t = (gt)f1 (|BZ76, Theorem 7.3]).

Suppose that 7 is generic and irreducible. For W € W (7, 4) we define W :G — C by

W (g) = W (w, - ¢!) where w, = (1_-1).

Proposition 1.1. The image of the map W — W is W (7,¢~") (the Whittaker model of &

in respect to the character ¥ ='). (where G acts on W (m,4) by right translations. We denote
this action by p).

Proof. We denote the action of G on Ind$; (v)) by p. Note that (ﬁ(h) W) (9) = W (gh) =

- ~—— - ~—— ~
W (wy, - g'h') = p (W) W (g) = p' (h) W (g). Therefore W +— W is a homomorphism 7 =

l ~

mt = pt — p. Tt is non-trivial and therefore its image is isomorphic to 7. We now check that
11



for W € W (m, %), we have W € Ind$, (¥~1). A direct computation shows that for u € N

1 a * x * I —an * *
1 as = * 1 —Qp—2 *
u = * , wn.ul.wn: ]_ k GN_
1 Ap—1 —aq
1 1
Therefore 1) (wnulwn) =1~ (u), and the proposition follows. O

We denote for g,h € G and W € W (mr,¢), (A (h) W) (g) = W (h™'g). Denote for a € F*,
Yo () = 9 (ax). For W € W (mr,¢) and a € F* denote W? = \ (diag (1, a,...,a*™ 1)) W.

Proposition 1.2. The image of the map W +— W is W (7, 1),).
Proof. Tt is clear that this map is a non-trivial homomorphism with respect to the action of

right translations. One easily checks that its image is contained in Ind$ (). U

1.1.2. Haar measure. Let G be an [-group. It is common knowledge that there exists a unique
(up to multiplication by a positive scalar) right Haar measure which is right invariant to the
action of G, i.e. there exists a measure p, ¢ such that

/G f (90) dpinc (g) = /G £ (9) dincs (9)

for every Schwartz function f.
Similarly, there exists a unique left Haar measure.

Theorem 1.3. Let K be a closed subgroup of G, both assumed unimodular. There ezists a
unique measure ji,\c invariant to right translations such that for every f € S (G) we have

/K . ( /K f (kg) dpx (k)uK\c / 7 (9) dyic (g

(See [Lan12, Page 37, Theorem 1]).
Remark 1.4. Note that the map g — [, f (kg) dux (k) is constant on cosets x\

In the following we choose for a finite group G the following normalized Haar measure

/f ) due (g |G|Zf

geG

and therefore we have the following Haar measure on the quotient space: for K < G and

fZK\G—>(C,
| 0= X 1

gex\®
12



1.1.3. Fourier transform. Let ¢» : F — C* be a non-trivial additive character of F'.

It is standard knowledge that all (continuous) characters of F' are of the form v, (z) =
¥ (ax) where a € F. Such a is unique.

It follows that all (continuous) characters of F™ are of the form v, (z) = ¢ ({(a,z)) where
a € F" (where (a,z) = a-z' = >  a;,r;) and such a is unique. In the special case of
M, (F) = F™ all (additive continuous) characters have the form 4 (X) = 1 (tr (4 - X))
where A € M, (F'), and such A is unique.

Fix a non-trivial additive character ¢»* : ' — C*.

For G = F, F", M,, (F'), the Fourier transform of a Schwartz function f : G — C is defined
as

£ (a) = /G f (@) 67 () dpc ()

where i¢; is a Haar measure of G. It is known that pg can be normalized such that f (a) =
f (—a) (Fourier inversion theorem).

In the case where F'is a finite field and the Haar measure is the normalized Haar measure
as chosen before on G, the Fourier inversion theorem has the form

2 1
f(a)=@ (=a).

Let f € S(F") and let g € GL,, (F'). Define (p(g) f) (z) = f (zg).

A simple change of variables in the integral yields the following:

Proposition 1.5. p(g) f = |deltg|P (") I

1.2. The Jacquet-Shalika integral. Let m be a positive integer. Let m be an irreducible
generic representation of GLs, (F)), and let ¢ : F' — C* be a non-trivial character of the
additive group F. Let G = GL,, (F) and let be N < G the upper triangular unipotent
subgroup. Let M = M, (F') and B < M be the upper triangular subspace. Let ¢ = ¢, =

(0 0 ... 0 1) e F"™™ Let o be the permutation
(1 2 3 ... m m+1 m+2 m+3 ... 2m
~\1 35 ... 2m—1 2 4 6 ... 2m

and let w,, ,, be the column permutation matrix corresponding to o, i.e. Wy m = Pycol =
(Cor)y €o@) -+ Comm)-

Remark 1.6. Note that for an arbitrary matrix (a;;), ; € M, (F'), and for an arbitrary permu-
tation 7 € S, we have P o (a;;) P;clol = (a7_1(i)T_1(j))m and therefore wy, ., (a; ) w;:m —
(@01 0016).

Definition 1.7 (The Jacquet-Shalika integral). Let s € C, W € W (m,v), ¢ € S (F™), we
define

tataWeo)= [ W (s (") (7)) @ X000 e el .

13



In case that F' is finite, |det g| = 1 for every g € G and we omit s from the notation:

000 = g 1, X W (e (" 1) (7)) v 0ot

geN\G XEB\]W

Proposition 1.8. The integrands involved are well defined (as formal expressions).

Proof. First we show that for a fixed g € G, the function

FOO =W (w (" V(7)) 0 (-x (20))
(e (" 2) ()

is constant on cosets of s\™: If X’ = X + U where U is an upper triangular matrix.

f(X+U):W(wm,m (Im X;;U) (g g>)w(—tr(X+U)).

*

ay *
DenoteU:( . ),al,...,ameF, then

am
n

Y (—tr (X +U)) =¢ (—Z%) ¥ (—tr (X))

k=1

m,m ) m ix (a; = W v
We calculate w,, m, (I }i w,t . For a matrix (a;; 1<ij<n We have

m,m:*
—1
Wm,m (aij) Wi, m = (afffl(i)vafl(]‘))lgi,jgn ’
It is clear that after conjugation the diagonal is preserved. We notice that the only non-
diagonal entries of (" /) that can be non zero after conjugation are those with (o (i), 07" (j)) =
(7,7 +m) where 1 <’ < 7 <m, ie

(i,7) = (0 (i) .o (j' + m)) = (2" = 1,25").

Note that 7 = 27/ — 1 < 2i' < 25" = j and therefore wy, , (I’" I[in) w;%lm is an upper triangular
unipotent matrix, i.e. Wom (" 7 ) wyt, € Nom.

Finally we compute the non-zero elements above the diagonal: these are the elements with
index (7, ) with i+1 = j. But the above computation shows i = 2i’—1, j = 25" and therefore

1" = j" and we get that the elements above the diagonal are exactly a1,0,as,...,0, an, i.e.

1 a * * x x

1 0 * % =%

(Im U) . 1 ay * x
wm,m wmm: .

I, ’ 0 %

1 a,,

1

Therefore we have ¥ (Wnm (™ [ ) wit,) = ¢ (34 ax). 1t now follows that f (X +U) =
f(X), as required.
We now show that the expression

no) = [ W (" ) (7)) w0 -0 o) et

14



is constant on cosets of x\“.
Let u € N. We have |detu| =1, eu = ¢.

ntug) = [ W (e () () (7)) 00X o el

The automorphism X +— u~!Xu preserves the upper triangular matrix group. We substitute
X' =u'Xu, dX'=dX and trX = trX’.

Finally we compute wy, m (* u)w;b}m. As before, the diagonal is preserved under conju-
gation and the only non-diagonal elements of the conjugation which can be non zero are
those having index (071 (i),071(j)) = (¢/,7/) with 1 < < 7 <mor (67 (i),07 (j)) =
(" +m,j +m) ie (i,5) = (2 — 1,25’ = 1) or (i,j) = (2¢,25’). Since ¢/ < j' we have
2’ —1 < 2j' — 1 and 2i' < 25’ and therefore in both cases i < j. Therefore wp,,m () wy,),
is an upper triangular unipotent matrix, i.e. wmm (") w;,, € N.

We check again the elements above the diagonal: these are elements having index (3, j)
with ¢ + 1 = j. Since in the first case, both ¢ and j are odd, and in the second case both
1 and j are even, we conclude that all elements above the diagonal are zero, and therefore
U (Wi (" w) wpyk,) =1, and we conclude that h (ug) = h(g), as required. O

m,m
For a finite field there is no question regarding the integral’s convergence. We show in

Subsection that for a p-adic field F, the integral converges for Re (s) sufficiently large
(larger than r, »2 € R where r; 2 depends on 7 only).

1.2.1. The dual Jacquet-Shalika integral. Let m be a generic irreducible representation of
GLop, (F), and let s € C, W € W (7,¢), ¢ € S (F™), we define

j7r7¢ (87 W, ¢) = Jfrﬂffl (1 — 5, ((I Im)) W? QAS) .

(See Subsections L1.3).

We develop an expression for J 4 (s, W, ¢) which will be useful later.
Recalling that W (g) = W (wamg') we get

l l l
jﬂ,w (5;W7 ¢) = /\G /\MW (mewin,m (Im ;j};) <g g) (]m Im) ) w (tI'X) dX-

- ¢ (2g) |det g|'~* dg,

a direct computation shows that

l [ Xl g : Im l_ [m [m _Xt gl
w2mwm7m I q [m = WomWm,m Im [m gl :

To proceed, we claim that ws,, and wy, ,, commute: it suffices to show that the permutations
T = (2171 2m2—1 Q{n) and o commute, as Way, = 7,coly Wmm = L5 col and PT,colPo,col = PTOO’,CO]‘

fl1<i<mthen7(c(i))=72i—1)=2m—(2i—1)+1=2m—2i+2and o (7 (i) =
o(2m—i+1). Here 2m —i+1 =m+ (m+1—14) > m as ¢ < m + 1, and therefore
o(2m—i+1)=2(m+1—-19)=2m—2i+2.

f1<i<mthent(oc(i+m)) =7(2)=2m—2i+lando(r(i+m))=0c2m—(i+m)+1) =
om—i+1). Here 1 < m—i+1 < mas1l < i < m, and therefore c (m—i+1) =
2(m—i+1)—1=2m—2+1.

15



Using the fact that wy, , and ws, commute, and that wa, = (4, “™), we get by a direct
computation that

~ _ t l
Totswior= [ w (g (T ) () ) ax
N\G B\IM m wmg

- ¢ (eg) |det g|'~* dg.

Substituting X = —w,Y w, and g = wy,h!, we get trX = —trY, |detg| = |det h|™" and
cw,h! = e1h!, where g = (1 0 ... 0) . Therefore

Trsp (5, W, 0) = /\G /\MW (wm,m ([’” };) (h h)) U (—trY)dY - ¢ (e1h') |det h|*"" dh.

1.2.2. Equivariance properties.

Definition 1.9 (The Shalika subgroup).

szm_{<g )5) |g€GLm(F),X€Mm(F)}

We define a character ¥ on the Shalika subgroup by W ((9 )g()) = ¢ (tr(¢7'1X)). One
easily checks that this is indeed a character.

We define an action of Sa, on S (F™) by (p((95)) ¢) (z) = ¢ (zg) = (p(9)) (z).
Let s € C, such that J., (s, W, ¢) converges (respectively such that JZW (s, W, ¢) con-
verges) for every W € W (m,¢), ¢ € S (F™).

Proposition 1.10. The map Bs, : W (m,¢) x S(F™) — C, Bs(W,¢) = Jry (s, W, 9)

(respectively B, (W, ¢) = Jpu (5, W, 8)) is a bilinear form which is |det| ™2 - U equivariant
over San,, i.e. for every (9 {;) € Som, W eW (m,v) and ¢ € S (F™) one has

B, (w ((g jf)) W0 (9) ¢>) — |det g™ (ix (97 X)) - B, (W, ).

Proof. It suffices to prove the claim for elements of the form (™ };) and of the form (" ).

For elements of the form (I’" I’;) we have

o (5 D))~ (e (5 )

¢ (2g) |det 9" dg.
Substituting X' = X +¢gY ¢!, dX’' = dX and tr (X) = tr (X’) —tr (Y), yields the requested

result.

For elements of the form (",) we get the result immediately by substituting gh = ¢/,
|det g|° = |det ¢'|” |det h| .

We now show the statement for the bilinear form B, (W, ¢) = J,., (5, W, $). We use the
expression

j7r,1/) (57VV7¢) = /\G /\M W (wm,m <Im ?fn) (g g)) 'lb (-tI'X) dx - é (€1gl) |detg|s—1 dg

16



For elements of the form (I’" };) the proof is exactly as before.
We check the equivariance of J ,; for elements of the form (", ): we recall that from Propo-

sition we have p( ) = |deth|p (hl) ¢7 and therefore Jmp (3 - <(h h)) W (h) ¢)
equals

L Ly X\ (9 h

|det h| /N\G /B\MW (wmm( ]m) ( g) ( h)) P (—trX)dX-

. qg (6lglhl) |det g|s_1 dg.
As before, substituting gh = ¢’ yields

oo (s (")) weo ) <o 5.2,

as required. O

1.2.3. Change of the character 1. As noted in Subsection given a non-trivial character
¢ : F — C*, any other non-trivial character of ¢/ : F' — C* is given by ¢/ () = v, (z) =
¥ (ax), where a € F*.

Let a € F*. We wish to relate between J; 4 (s, W, ¢) and J, 4, (s, W?, ¢) (See also Propo-

sition

e (5, W ¢ / / (d1ag 1,a, 2m_1)_1 Winm (]m }X) (g ))
N\G J g\ M m g

Y (—atrX)dX - ¢ (eg) |det g|° dg.

After conjugating with wy, »,, we get w;,!, diag (1,a,. .. a2 = <d51 . ), where

d, = diag (1,a?, ..., a*™?)

I, d;'Xd,a\ (d;! I, )
/\G /\M (wmm( ¢ I ) < g dlg) ( a7 )) Y (—atrX) dX-¢ (eg) |det g|” dg.
N B m a m

Replacing d;'g = ¢/, d, Xd;'a = X', |det g| = |det ¢'| - |a|2<?), dX' = ]a|_2(m;1)+(?) dX (as
Di<jcicm (0= J) = (m;1>)7 we get

T (5, W, 6) = |a|2(m§1)+(7§)(25—1) T (S,ﬂ' ((Im al-[m)> W, ¢a2m2> :

where ¢uem—2 (z) = ¢ (a*™2 - ) for x € F™.

Replacing ¢” = a®™2¢/, we get the relation

m(m—1)(2m—1) _ _ _ _
Traso (5, W, 8) = la 75 0y (@) 20 fo im0 g (w <(Im 0l )) W ‘f’) |

Similarly, repeating these steps for the expression of jm% (s, W2 ¢) (except of the substitu-
tion g” = a®*™2¢’, which is not needed) yields

~ a m(m—l)l(2m,—1) mm— s— ~ Im
Jr i (8, W, 0) = |al 6 ja "D T (5777 (( a7 >) W, ¢> :

17
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2. THE JACQUET-SHALIKA INTEGRAL OVER A FINITE FIELD

In this section, F'is a finite field and ¢ : FF — C is a fixed non-trivial character of the
additive group F.

2.1. Preliminaries.

2.1.1. The Bessel function. Let n be a positive integer and let (7, V;;) be a generic irreducible
representation of G = GL,, (F'). Therefore there exists a non-zero functional 7" : V; — C
such that (T, 7 (u)v) = ¢ (u) (T, v) for every u € N = N,, (F), and v € V,. This functional
is unique up to multiplication by a constant.

Since G is finite and 7 is irreducible, V. is finite dimensional and therefore there exists
an inner product (-,-) on V., with respect to which 7 is unitary. There also exists a unique
0 # vy € V such that (v,vg) = (T, v) for every v € V. which implies 7 (u) vy = 9 (u) vo for
every u € N.

The Bessel function of 7 with respect to ¢ is defined as By, (g) = T@re) g (4) does

(vo,v0)
not depend on the choice of T as dim Homy (7 [y, ) = 1.
The Bessel function is a Whittaker function B, € W (w,%), and satisfies B, (1,) = 1.

It also satisfies for every g € G and uy,us € N, By (u1gus) = ¢ (urug) Bry (9)-
Proposition 2.1. |[Gel70, Proposition 4.5| The Bessel function is also given by the formula

Brs0) = 17 3t () v ().

ueN

Proposition 2.2. |Gel70, Proposition 4.9] Suppose that By, (wd) # 0, where w is a permu-
tation matriz, and d is a diagonal matrix. Then

)\1[n1
)\2[’(7,2
wd = ] ,
Al
whereny + -+ +n, =n and A\, ..., \. € F™.

Corollary 2.3. Let ¢ € G. By the Bruhat decomposition we can write g = ujwdus
where uy,uy € N, w is a permutation matriz, and d is a diagonal matriz. B, (9) =

By (uwwdug) = ¢ (uyug) Bry (wd). Therefore if Bry (g) # 0, then

A1]711
>\21n2

ArIy,

where uy,us € N, andny +---+n, =n and \y,..., \. € F*.
18



2.2. Non-vanishing. Let n = 2m be a positive even integer. Let m be a generic represen-
tation of GLa, (F).

We prove that the bilinear form J., : W (m, ) x S (F™) — C is non-trivial. We use
the Bessel function in the proof. One can avoid this by repeating the proof for the non-
vanishment of the Jacquet-Shalika integral for the case of a p-adic field, which we give in
Subsection The following calculation will be useful in the sequel.

Proposition 2.4. Let ¢ = 6. : F'™ — C be the indicator function of € = (() ... 0 1) €
1 =
Fxm e 6.(v) = 0 ! y ° and let Wig) = [G:N][M:B]Bry(g-w,',). Then
VF£E ’
Jop (W, 0) = 1.

Proof. We write

I, X _
Lo = Y Y B, (wmm< p ) (9 )wm}m)w_tm.
m g

gen\% Xep\M

eg=¢
Since o (2m) = 2m, both w,, ,, and w;ﬁm have ey, = (O ... 0 1) as their last row. If
the last row of g € G is € = &, then the last row of (7 ) is €y,,. Therefore if eg = ¢, then
for any X € M, the matrix wy,m (™ ;) (Y ¢) wy,h, has e, as its last row. Suppose that

Winm (I"" 1);) (74) w;ﬁm € suppBy 4, then by Corollary

Mln,
In X\ (g . Ao,
U1 Wm,m ( " Im) ( g) wm’mug = R )
Arly,
for uy,us € Nayy,, and A, ..., A\, € F* and nq,...,n, such that n; +--- 4+ n, = 2m. Since
U1, Uz € Nopy, the last row of uq, us is €9, and therefore the product on the left hand side
still has &9, as its last row. This implies n, = 2m, r = 1 and A\; = 1 and therefore
Wi (" ) (9 g) wyl, € Nappo Therefore u = wypm (¢°59) w,l, is an upper triangular

unipotent matrix. Denote (9 Xg) = (aij) Then u;; = (ag L(i),0- 1(])) Forl1<j<i<m
we have 0 (j) =2j—1 < 2i—1 =0 (i), and therefore u has 0 in its (2@ — 1,25 — 1) position,
and therefore a;; = ¢;; = 0. u; = 1, for every ¢, and therefore a;; = 1 for every ¢ and
gii = 1 for 1 <4 < m. Therefore g is an upper triangular unipotent matrix, i.e. ¢ € N. For
1 <j <i < m we have that (o (i),0 (j +m)) = (2¢ — 1,25) and since j + 1 < ¢, this implies
27 <27+ 1 < 2i—1, and therefore ug;_; 9; = 0, which implies a; j1, = 0. Thus Xg is an
upper triangular matrix. Therefore X is an upper triangular matrix.
Therefore the sum

I, X _
ﬂl’ W ¢ Z Z Bﬂili (wmm ( [m> (g g> wm,lm) ¢ (—tI‘X)
gy et

runs over exactly one coset of 5\ (the coset of I,,) and one coset of z5\* (the coset of 0),

and we get that J; , (W, ¢) = Bry (Iom) =1 # 0. O
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2.3. The functional equation. In this subsection we discuss the functional equation sat-
isfied by the Jacquet-Shalika integrals over a finite field.

Definition 2.5. Let (7, V) be a representation of GLo,, (F'). We call a vector v € V, a
Shalika vector of 7, if  ((95 ))v ="V ((¢3)) v, for every (9 ) € Sopn.

Theorem 2.6. Let (m, V) be an irreducible cuspidal representation of GLa, (F') and suppose
that there doesn’t exist a non-zero Shalika vector for m. Then there exists a constant Y, €
C*, such that

Top W,0) = Yo Ty (W, 9)
for every ¢ : F™ — C and W € W (7, 1).

This will be proved for a p-adic field in Subsection The proof is similar for a finite
field.

We give an overview of the proof and elaborate on some parts. Note that we assume that
F'is a finite field.

The idea of the proof is to show that the space of bilinear forms B : V; x S(F™) — C
which are W-equivariant is at most one dimensional. Since J,,, Jx, are non-zero elements
of this space, it implies that such a constant exists.

In order to prove that the following space (Homg,, (7 ® S (F™),V)) is at most one-
dimensional, we first prove the following multiplicity one theorem (Theorem [3.37):

Theorem 2.7. Let (7, V) be an irreducible cuspidal representation of GLa, (F'), then
dim HOIHPQMQJWm’m (71', 1) S 1.

Here Py, is the mirabolic subgroup of GLs, (F).

Another proof of this theorem for the case that F'is a finite field (as in this section) can
be found in [Mos08, Theorem 6.1.2]. We give here a brief overview of the proof that will be
given in Subsection [3.5]

In order to prove this theorem, we need some preparations. Let n be a positive integer.
Suppose that p > ¢ > 0 and p+ g = n. Let

Op,q =

12 ... p—q p—q+1 p—q+2 ... P p+1 p+2 ... p+q
12 ... p—q p—q+1 p—q+3 ... p+q—1 p—q+2 p—q+4 ... p+q)’

and let w,, , be the column permutation matrix of o, ,. We introduce the following subgroups
of GL,, (F):

M;)Z):{(gp g)ygpeGLp(F),gqeGLq(F)} p>q>0
q
(n) I
Mp,q—l = 9g—1 | 9p € GLP (F)a 9q-1 € GrLq—l (F) p Z q Z 1
1
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and we denote
(n) _ (™
Hpﬂ) = Wy, ‘IM Wy, q7
H(”—l) = w, qM(" 1) -1

p,q—1 pa—1 Wpg»

n h n
H,S_)Lq_lz{< )lhEH " 1}

HIET;) , and H "1 q) 1 can be thought of as subgroups of GL,,_; (F') and GL,,_» (F') respectively.

For a p051tlve integer k, we denote by Py the mirabolic subgroup of GLj (F). We denote

U, = {(I’“ 21}) |ve F’“}.

We define for a representation o of Py_;, a representation o’ of Py Uy by o' (pu) =
Y (u)o(p) (p € Pe_1, u € Uy) and we define a representation ®* (o) of P, by % (o) =
indk (o)

Pr_1Uyg :

We prove the following propositions:

Proposition 2.8. Supposep > q > 1 with p+q =n. Let (0,V) be a representation of P,_;.
Then there exists an embedding

Hom ®*(0),1) = Hom, . m (0,1).

PunH) ( o)

Proposition 2.9. Suppose p > q > 2 with p+q = n. Let (0,V) be a representation of P,_s.
Then there exists an embedding

Hom (@ (0),1) — Hom, .o  (0,1).

My Ar™ S

p,q—1
The proof of Theorem [2.7] follows by using these propositions repeatedly, the fact that for
an irreducible cuspidal representation 7 of GL,, (F'), its restriction to the mirabolic group P,
is isomorphic to the representation (@*)"—1 (1) (JGel70, Theorem 2.3]), and by the fact that
PZmQHmm_wmm(PQmmMmm) 1
Next we construct an embedding e Homg,, ~p,,, (7, ¥) — Homp, nn, .. (m,1) by the
averaging method (Proposition [3.51)): '

A (L) (v) = mgeg; F)L <7r ((9 Im» v) .

n(

Unlike the case of a p-adic field, in the case of a finite field there are no convergence issues
with this sum. In order to show that A is injective, we use the Fourier transform: let
0 # L € Homg,, np,, (m, V) and vy € V; such that L (vg) # 0. We define for a function

n €8 (Mn(F)),
s, 5, e (7 )

A simple computation shows that

—z<<< D))o



By choosing 1 such that 7 = §;,, we get that A (L) (v,) = mL (v) # 0. Therefore we
get, the following corollary:

Corollary 2.10. Let (w, V) be an irreducible cuspidal representation of GLa, (F'), then
dim Homp, g, (7, ¥) < 1.
We now move to the proof of Theorem

Proof. We show that dim Homyg,,, (7 ® S (F™),¥) < 1. Since Jyy, Jrp € Homg,, (1@ S (F™),¥),
and both are non-zero forms, this will imply that there exists such constant.
We first consider the restriction map

Homg, (7 ® S (F™),¥) — Homg,  (r®S (F™\{0}),¥)
B = B [y, xs(Fm\{0}) -

This map is injective. Indeed, suppose that B : V; xS (F™) — C such that B [v, xs(rm\(0})=
0 and B # 0. Then the map § : V; — C defined as 5 (v) = B (v,dp) is a non-zero linear
functional. Let (-,-) be an inner product on V,, with respect to which 7 is unitary. Then
there exists a non-zero vector vy such that 8 (v) = (v, v), for every v € V.. Let v € V,; and
(9 );) € Som. From the equivariance properties of B, and since p (g) dp = do, we have that

(D)) )

which implies 7 ((¢ 5 )) vo =¥ ((9 ¥ )) vo, i.e. vy # 0 is a Shalika vector, which contradicts
our assumption.
We now write

Homg,, (n® S (F™\ {0}), V) = Homs,, ((¥"'7) ® S (F™\{0}),1)
~ Homs,, (\Iﬂw, S(F™\ {0})) .
We identify F™\{0} with g,,,Ap,, \*>" using the map (7 ) — &,,g and therefore S (F™ \ {0}) =
S (S2mmp2m\52m> = lndEEZﬂPgm (1)
/\/
Homs,,, (7 ® S (F™\ {0}), ¥) = Homs,,, (q’w g p,, <1>)
= Homyg,,, (\11717?, ind%ZmPgm (i)) .

By Frobenius reciprocity

Homyg,, (\Irlw,indggj;mpm (1)) = Homp,ns,,, (7'7 [pnissm 1)

= Homp, ng,, (7, V)
By Corollary [2.10, we have dim Homp_ g, (7, ¥) < 1, and the theorem is proved. O

Remark 2.11. As seen in the proof, this proof fails when 7 admits a Shalika vector. In this

case, a modified functional equation is valid. This is discussed in Subsection
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2.3.1. Equivalent conditions for the existence of a Shalika vector. Let (m,V;) be an irre-
ducible cuspidal representation of GLg, (F,), and denote G = GL,, (F,). There exists a
regular character 6 : Fzgm — C* which is associated to 7 [Greb5|. We present an equivalent

criterion for 7w to admit a Shalika vector, in terms of 6.
We denote

Vi = {v €Vplm ((fm f)) v =1 (trX)v, VX € M, (Fq)} ,

a twisted Jacquet module. This space is invariant under the action 7 ((Y4)) for g € G. We
denote its action by 7, . (9) =7((?4)) rVﬂNm,m,w‘

A non-zero Shalika vector v is an element 0 # v € V., . such that 7 ((?,))v = v for
every g € G, and therefore it exists if and only if Homg (1, TNmmsts) 7 0

Due to a result of Prasad [Pra00, Theorem 1], 7y, . o = Indg*m (0 [F;m> (we view [}, as

a subgroup of GL,, (F,)). Therefore 7 admits a Shalika vector if and only if

0 # Homg <1, IndI%m <9 [F2m>) .
By Frobenius reciprocity
Homg <1,Ind§;m (9 f%)) = Homg~,, (1 ¥z, 0 []F;m)
and the last space is non zero if and only if 6 [Fzmz 1, and then it is one dimensional.

Corollary 2.12. Let (m,Vy) be an irreducible cuspidal representation of GLa, (F,) and let
g : Fzgm — C* be a reqular character associated with w. Then w admits a non-zero Shalika
vector if and only if 0 [Fzmz 1. In this case, the space of Shalika vectors is one dimensional.

We finish by giving another criterion for admitting a non-zero Shalika vector.

Proposition 2.13. Let (m, V) be an irreducible cuspidal representation of GLg, (F,). w
admits a non-zero Shalika vector if and only if there exists W € W (m,1) such that

ey (W, 1) #0.
Proof. Suppose that there exists W € W (7,4) such that
S Y w <wm,m ([m ;() (9 g)) Wb (—trX) # 0.
gEN\G XEB\M m
Denote
I, X k
Wolg)= Y. > W(g( 7 ) ( k))w<—trX>-
ken\G Xep\M "

Then Wy € W (m,¢) as a linear combination of right translations of W. W, # 0 as
Wo (Wpm) # 0. Clearly, W, is a non-zero Shalika vector.
We now move to prove the other direction. Assume that 7 admits a non-zero Shalika

vector vg. This vector defines a non-zero element 7, € Homg, (7, V) by Ty (v) = (v, ),
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where (-,-) is an inner product with respect to which 7 is unitary. Since Homg, (7, V) C
Homp, ns,,, (7, V), we have Homp, ns,,. (7, V) # 0. Due to Corollary

dim Homp, ns,, (7,¥) <1,

and therefore we have in this case (that 7 admits a non-zero Shalika vector) that Homp, ns,,, (7, V) =
Homyg,, (7, V).
We present a non-zero element of Homp, g, (7, V) defined by

=2 D B (g (Im ffn) (k k) w;,lm)w—trX),

ken\F Xeg\M

where P = P, (F,) = {g € GL,,, (F,) | emg = €m}. Asabove, it is clear that W € Homp, s,,, (7, ¥).
From Proposition W (Wimm) = 1 and therefore W # 0. Since Homp, ns,,, (7, V) =
Homg,, (7, W), we have W € Homg,, (m, ¥). A direct computation shows that

oy W, 1) =W (Wi 1) # 0.
0

2.4. Computations. We now compute ., for cuspidal representations of GLs,, (F,) that

don’t admit a Shalika vector, where m = 1,2. We begin with a general computation.
Let f: Fy" — C be defined as

1 z=—&=(-1,0,...,0)

fa) =6z, () = {0 L

Then

and by Fourier inversion formula, jg( ) = - f (—x), and therefore if h (x) = 7 (—x1), then
h(2) = b, (2) A

We substitute ¢ (z) = ¢ (—21) (¢ (x) = 0., (z)) and W (9) = [G : N][M : B] By (gw;%lm)
in the equality

in order to compute Yy .
We begin with computing

Jee)= Y By, (wmm(f’” » ) (g g) w;n}m)w—trX)-égl (e19')

gEN\G XEB\J\I

Ocy (elgl) equals 1 if and only if the first row of ¢ equals e; = (1 0o ... O). This is true
if and only if the first column of g~! is !, By matrix multiplication we see that this is true

if and only if the first column of g is &}.
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Suppose that g € G such that g has €} as its first column. We recall that by Corollary
that if W, (" ) (74) wyk, € suppBry, then

I, X _ Aoy,
U1 Wm,m ( [m> <g g) wm,lmu2 - L ’ )

Arly,

for uy,us € Ny,, and A1, ..., A\, € F* and nq,...,n,, such that ny +--- +n, = 2m. Since
g has €} as its first column, (?,) has &/ € F?™*! as its first column. Since o (1) = 1,
the elements wp, n, Wy, have gl € F*™*1 ag their first column, and since uy, us are upper
triangular unipotent elements, they also have £/ € F?™*! as their first column. Therefore
the left hand side has €} as its first column, and therefore r = 1, Ay = 1 and n; = 2m, and
we have Wy (™ ) (9 9)wyt, € Now. As in the proof of Proposition this implies
that g € N, X € B, and therefore

jrr,w (V[/a ¢) = Bﬂ',w (IQm) =1.
Therefore
-1 B I, X g -1 —trX) - Fo(_
/yﬂ-’w 7r¢ ng Z Z w3 | Wmm I g Win.m w( tr ) ¢ ( gml)
gen\% Xep\M "

We denote for a € I,

2 (e D))o veem

QEN\G XEB\AI
gmi1=a

Then ’nglp =D ucr, S,” (—a). For a # 0, replacing g with ag in the expression of S, yields
Sa = wy (a) S1. Therefore ’y;ib =Sy + S5 ZaE]F* v (—a) wy (a).
Note that if the central character w;, is not tr1v1al then wy (a) # 0 for some a € F;, and

then by replacing g with ag in Sy we get Sy = w, (a) Sp, and therefore Sy = 0.
Regarding Sy, we define for v € Fj*~!,

> D Bes (wmvm (Im ;fn) (g g> w;,1m> ¥ (—trX),

gen\¢ Xep\M

emg=(1,v)
and therefore S; = ZUE]FZ,H S Forv e IFm*1 denote u, = (1 1) then (1 0 ... ()) Uy =
(1 v), and thereforee; = (1 0 ... 0)= (1 v) u,'. Substituting g = ¢'u, in S(1,) yields

w5 (o (" D)) )r)orcen

g/EN\G XGB\JW

emg’ =¢e1
We now compute W, (" v, ) w,,,: its diagonal consists of the element 1 only. The only
possible non-diagonal non-zero elements of u, are those with index (1, j) and (m + 1,m + j)

with 1 < j < m. These move after conjugation to (¢ (1),0(5)) = (1,2j — 1) and (c (m+ 1) ,0 (m +j)) =
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(2,24). Therefore wym (" v, ) w;,, is an upper triangular unipotent matrix, with no non-
zero elements above its diagonal, and therefore ¥ (wpm (" u, ) w;,},) = 1. Hence

m,m

[m X g/ Uy -1 _ [m X g, -1
(7 ) o) D) )
Therefore we have S(1,) = S.,, and S; = ¢™ 'S, and fy;b = So+qg™ ! (Zaep wy (a)y” (—a)) S.,.

2.4.1. Computation for m = 1. For m =1, G = GL, (F;) =F; and M = M, (F,) = F, and
therefore B = M and N = {1} and the condition eg = ¢; implies g = 1. Therefore

10 1 0\ _
881 = Bﬂ',d} (wm,m <O 1) (O 1) wm}m> = Bﬂ',d} ([2) = 17

and Sy = 0 as the condition g;; = 0 implies ¢ = 0 but then ¢ is not invertible, and hence Sy
is the empty sum. ¢! =1 and we have

Vo = D wr (@) 97 (—a).
acFy

We conclude this in a theorem:

Theorem 2.14. Let 7 be an irreducible cuspidal representation of GLy (F,). Then

Yo = D wr (@) 97 (—a).

ackFy

2.4.2. Computation for m = 2. For m = 2, G = GLy (F;). Let 6 : F;, — C be a regular
character associated with 7 and assume that 0 [r- # 1, so that 7 doesn’t admit a Shalika
q

vector.

We begin with computing Sy in the case that the central character is trivial. Let g €
GL; (F,), such that g = 0. Then g = (§§) = (' {) (*4), and therefore g € N (*;) for
a,b € F,. Then

5= 3 B (wmm (Im }i) (diag (a,b) e (a,b)) w;ﬁm) b (—trX) |

aEFZ XEB\]”
bely

Taking bl out of B, 4, in exchange of multiplying by the central character w, (b) = 1, and
then replacing ab~! with @ and (* ) with g we get

ST E Fsefonn( 1) oo

bEFZ geN\G XGB\IW
eg=¢

0 71
By PI’OpOSition we get SO =q— 1 We COHClude that SO = { 1 w §é 1 .
¢—1 wr=

We now compute S,. Suppose g € GLy (F,) with e,,9 = &1 i.e. g = (1§) with b € F}.
Then g = (1¢)(9%), and therefore g € Ny (F,) (9%).
Since
e\ 2 NG (F),
26



where N (F,) is the subspace consisting of lower triangular nilpotent elements of M, (F,),
it suffices to consider only these elements.
Let X = (90) and let g = (9 §) where b € F;. Then a simple computation shows that

b 0 0 b 0
I X\ (g -1 _
wm,m ( I) ( g) wm,m -
Therefore

S O ORI R ()}

which implies
. 0 b[g . 0 oI 2
s (3 ) ()

z€F, beF; beF;

O = OO
_— o O O
S O O =

0
0
0

oo

1 0
0 1
0 0

— o O

We use the values of the Bessel function for GLy (F,), which are computed by Deriziotis and
Gotsis [DGI8, Page 103]. In our case

0 I I, 0
W = Wg = (12 02>7 t: (/’LO2 VI2)’

where = b, v = 1. The value B, (tw) is given by
Bey(tw)= Y F(§0)0(),
¢eFr,
NF_4/Fg (&)=pv?

where

Fo(6t)=—q " | (&) + ) v (—B pal)rel) w/) |
BEF; Buv

and

—q §€Fp\Fyand pv = —Ng,, (€)
0 otherwise

Y

Fé(&t)Z{

(6) = —Trruym, (€) = — (¢ + &7 +€" +¢7),

ar (&) = — (éﬂl—&-q—i-q2 + €1+q+q3 + £1+q2+q3 + §q+q2+q3> ’
(
(

£) = £1+q+q2+q3

)

In our case,

—4 / a (§) +az(§)b
I
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Bﬂ'ﬂ/’ (tw) = Z F6 (57 t) 0 (6)

ay — 0Ty , /p,
D ] G e P D ST

5615‘24 BEFY §€F 2\Fq
N]Fq4 /Fq (&)=b N]qu /rq(E)==b

and therefore

- 0 bl
¢S, = qZBm(( 2))

belF:

1 a1 - .
3l S
; (eF?,  per; €EF o \F,
Nr , /5, (E)=b? N]Fqg /7g (§)=—b
q

It is clear that 3 ycp. >0 cero\r, () = Xeere, 0(8) — Xeer: 0(€), as —b runs on all
N]qu i (§)==0 !
the norms of elements of Fp2 \ Fy. Since 0 [+, # 1, } ccpe () = 0. Regarding the sum

over Fy, Green’s formulas imply that w, = 6 [p:, and therefore we have Z5€F3 0 =
q—1 w,=1

0 wy £ 1
ing these implies

. We also notice that if w, =1, then >_, . wr (a) ¥ (—a) = —1. Combin-

ay —bTr]F4Fq
gkt DOCACLECONE DU DD Zw<—ﬂ+ © 5,)“(@)0(5) ,

a€F; beF; ¢eFr,  BeF;
N]Fq4 /r, (€)=0°
1 —
q— q Wr = 1
0 wr E 1

Using the relation a; (§) = =N ,/r, (§) - Trr ./, (%) , we obtain the following theorem.

WhereTozS(H—%(q—l):{

Theorem 2.15. Let 7 be an irreducible cuspidal representation of GLy (F,). Then

Y =To—5 | D wel@” (=) | | D D v (ﬁ+ TrM/Fq(ug))@(é) ,

acF; beF: = BEIF*
Nr_4/Fq (5)
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where Ty = {
0

q_l

Wy =

we#E 1
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3. THE JACQUET-SHALIKA INTEGRAL OVER A p-ADIC FIELD

In this section, F'is a p-adic field. We denote by O the ring of integers of F', P the unique
prime ideal of O, and w a uniformizer of F' (a generator of P). We denote g = |O/'p‘.

3.1. Preliminaries.

3.1.1. Decomposition of Haar measures. Let G be an [-group. It is common knowledge
that there exists a unique (up to multiplication by a positive scalar) measure which is right
invariant to the action of G, i.e. there exists a measure ug such that

(LﬂWWMdW:K;@MWMW

for every f € S(G), a € G. A similar result holds for a left invariant Haar measure.
We will need some decomposition theorems.

Theorem 3.1. Let G be a locally compact unimodular group, and let P, K < G be two closed
subgroups of G, such that G = PK and such that PN K is compact. Then a Haar measure
on G is given by fK fP [ (pk) dw pdp,. - where duy p is a left Haar measure on P and dp, x
15 a right Haar measure on K.

Theorem 3.2. Let B be a locally compact group, and suppose that B = AD( N where A, N are
closed subgroups of B. Then a left Haar measure on B is gien by [, [y f (an) du,n (n) dpy,a (a)
where [y a, pun are left Haar measures corresponding to A, N

Another form for a left Haar measure on B is given by [, 55" a) [y [ (na d/,Ll N (n)du, A (a)
where dp is the Haar modular function of the group B, i.e: fB gb) du g (g) = 0p (b) fB (9) dus (9)
(be B).

3.1.2. lwasawa decomposition. Let n be a positive integer. Denote G = GL, (F), K =
GL, (O) and denote by B the Borel subgroup of G, consisting of invertible upper-triangular
matrices. B is a closed subgroup of G.

The Iwasawa decomposition of G is given by G = BK.

It is standard knowledge that G is unimodular. K is also unimodular as a compact group.

Since BN K is compact, we get the following decomposition of the Haar measure (using
Theorem [3.1)): Given a function f € C* (G) (i.e. a smooth function f: G — C) we have

/G 1 (9) dric: (g / / (b dpuxc (k) s (b)

We denote by A C G the diagonal matrix subgroup of G' and by N the upper triangular
unipotent matrix subgroup of G. It is clear that B = A x N. N, A are unimodular. We
write the decomposition of the Haar measure on B as well (using Theorem [3.2)):

[ 1@ dun®) = [ 55 @) [ f (wa)duy () dia (),
B A N
where 05" (diag (a1, ...,a,)) = [Ticicj<n Z—J , and we get the decomposition

[ 1@t = [ [ [ 55 @ (wak) duse (0 do () da ).




From the uniqueness of the measure p,\c (see Theorem [1.3), we conclude that for f €
C* (v\)

[ @m0 = [ [ @) k) d 06)da (o).

3.1.3. Local zeta integrals.
Theorem 3.3 (Local zeta integrals of Tate). Let x : F* — C* be a unitary character of F
and let p € S(F), s € C.

(1) The integral

Z(s,0,x) = . ¢ () x (z) |2|" dpp- (x)

converges absolutely for Re (s) > 0. It converges to an element of C (¢°) and therefore

has a meromorphic continuation to the entire complex plane.
1

fine I T—x(@)q—= ' fied (x o= 1)
2) D ) = { X X s unramifie
(2) Define L (s, ) {1

, , . Then
X 1s ramified
{Z(s,0,x) 10 €S(F)}=L(s;x)-Clg™,q7] -
(See |GH11, Remark 2.3.3, Theorem 2.3.13, Theorem 2.4.13]).
Theorem 3.4 (Local zeta integrals of Godement and Jacquet). Let m be an irreducible
smooth representation of G = GL, (F'), ¢ € S (M, (F)), s € C. Let f : G — C be a matriz

coefficient of , i.e. f(g9) = fos(9) = (0,7 (g)v) forve V,, 0 € V.
(1) There exists some r, € R depending on m only such that the integral

Z (s,0,f) = /Gcb(g) f(g) |det g|” duc (9)

converges absolutely for Re (s) > rp. It converges to an element of C(q®) and there-
fore has a meromorphic continuation to the entire complex plane.
(2) There exists a unique element p (X) € C[X] with p(0) =1 such that

—1 ~
{Z (s+nT,¢,fv,f,> |¢eS(F),veVW,6eVW} :p
We denote L (m,s) = zﬁ'

(See [GJ72, Page 30, Theorem 3.3]).

Theorem 3.5. Let m be an irreducible smooth supercuspidal representation of GL, (F),
where n > 1. Then L (m,s) = 1. [JacT9, Example 1.3.5]

3.1.4. Estimates on Whittaker functions. Let aq,...,a,_1 € F*. We denote
m(ay,as,...,a, 1) = diag (ayaz - - - - Up-1,03 " Qp_1,. .. Qn_20n_1,0n_1,1).

Proposition 3.6. Let m be a generic irreducible representation of GL, (F). Let W €
W (7, 1)). Define f: (F*)"™' = C by

flar,...;an_1) =W (m(a1,as,...,a,_1)).
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Then f s locally constant. Furthermore, for every 1 < iy <n —1 there exists R;, > 0, such
that f (a1,...,a,_1) =0 for ay,...,a,_1 € F* having |a;,| > R;,.

Proof. Since 7 is smooth, there exists an open subgroup U C G, such that for every g € G
and v € U, we have W (gu) = W (g). Intersecting with the diagonal subgroup of G yields
a subgroup of the form AN U = {diag(by,ba,...,b,)}, where by,... b, belong to open
subgroups of F*. From continuity of the map

(a1, ..., ap_1) = m(ay,...,a,_1)
we get that the set
by b bp— )
U/: _la_27"'7_27bn—1 |d1ag<b1a627"'7bn—171) eU
by b3 bn—1

is open. Since W is invariant to right translations by elements of U, f is invariant to
multiplication by elements of U’. Therefore f is locally constant.

Let Ky = I, + @™ M, (O) be a congruence subgroup of GL, (O), such that W is invariant
under right translations of K.

Let 1 < iy < n—1. Consider the unipotent radical associated to the partition (ig, n — i):

(ot |
Ntion—io) = {< Otn—io)xio | In—io )}

Then for every element u € Ky N Nijyn—ip) and g € Gap, we have W (gu) = W (g). On the
other hand, taking g = diag (t1,...,t,) yields gug™" € N, n—iy) and therefore

W (gu) =W ((gug™") g) = (qug™") W (g).

Since u € N(jyn—iy), the element gug~! has zeros above its diagonal, except for the place

.. . t;
(49,79 + 1), where it has the value T Uig,io+1- Therefore
0

W (gu) = (ttiuioﬂ'o-i-l) Wig),

i0+1
t;

and we get that W (g) = ¢ (ﬁ
ig+1
Y Ipv= 1 and ¢ [pvgZE 1 (e. PM = MO is the conductor of ¢). If

uio,iﬁl) W (g), for every u € Ky N Nign—ig)- Suppose
tiO

tig+1

g No.gM . then we can choose an element u € Ky, M N(ig,n—i)» such that ¢ (%umm“) # 1

>

(by choosing a suitable |u, 11| < ¢~ and placing zeros in other non-diagonal entries),
and therefore from the equality W (g) = ¢ < o uio,iﬁl) W (g), we have that W (g) = 0.

Lig+1
Translating this to f, we get that f(ay,a9,...,a,-1) = 0 for |a;| > R;,, where R;,

g No.gM, O

Proposition 3.7. Let m be a generic irreducible supercuspidal representation. Let W €
W (m, ) be a Whittaker function. Define f as above. Then f € S ((F*)”_l)

Proof. 1t follows from the previous proposition that f is locally constant and vanishes when-
ever |a;| is large for some 1 < i <n — 1. We show that f vanishes whenever |a;| is small, for
some 1 < ¢ <n — 1. Combining with the previous result, this yields
Suppf g {(a17"'7an—1) | V1 S ? S n,r S |az| S R}’
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where r, R > 0. The right hand side set is a compact subset of (F*)”_1 and therefore supp f
is compact as a closed subset of (F*)" " contained in a compact set.
Since 7 is supercuspidal,

W (mr,) = spang {p (u) W' — W' |u € N, W € W (rm, )},

where « # (n) is a partition of n and N, is the unipotent radical of GL,, (F') corresponding
to o (This is true for any partition o # (n)).
Let 1 < iy <n— 1. Taking o = (ip,n — ig) we get that

W = i( (WD) Wi = W),

where [ >0, (W;)\_, €W (x, %) and (u®)._, € Nigm—io)- For every g € G we have

W (g) = Z (Wi (qu?) — Wi (9)) -

Taking g = diag (¢4, ...,t,) as before yields
!

Wig)=>_ (Wi(gug'g) — Wi(g))

t; i
<@/J (ﬁugo),iwrl) - 1) Wi(g).
=1 o

Suppose that 1 [pv= 1 and ¢ [pv1Z 1 (i.e. PV is the conductor of ¢). Therefore if
tig_q, (). ‘ < g Nforevery 1 <i<l ie.

t¢0+1 10,5011

I
. .
M - |l
—_

tio l
— | - IMax

=1

(®)

—-N
ioyio-i-l‘ <q .

u

Lig+1

Then we have (t - ES)JOJrl) =1, for every 1 < i <[, and therefore W (g) = 0. Translating
this to f, we get that f(ay,...,an—1) = 0 for ay,...,a,—1 € F* having |a;,| < r;,, where

O

Ty = 1 .
maxq 1,max;_, uZO io+1

Proposition 3.8. Let G be an [-group and w be a smooth representation of G. Suppose that
a: X = G is a continuous map where X is a compact topological space. Let v € V,,, then

there exist a finite number of independent vectors (UZ)N1 and smooth functions (al) _, with
a; : X — C such that

x))v= Z a; (z) v;.

Proof. Since « is continuous, o (X) C G is compact. Since 7 is smooth, stabgv is open, and
therefore the cover a(X) C |J,cx o (2) - stabgv has a finite sub-cover

U ) - stabgv.



Therefore
spanc {7 (a(x))v | x € X} Cspang {7 (a(x;))v |1 <i < M}

is finite dimensional. Choose a basis (v;)Y, for spanc {7 (a (z))v | € X}. Therefore for
every o € X there exist (a; ()Y, € C such that

x))v= Z a; (z) v;.

We show that «; are smooth functions.

Let o € X. Since stabgv is open, so is a (xg) - stabgv. Therefore, from continuity, the
inverse image a~! (a (z¢) - stabgv) is open. Denote this set as U,,. For every z € U,,, we
have a (z) € a (zo) - stabgv, and therefore 7 (a (x)) v = 7 (v (xg)) v, which implies

E Q $0 E az (%%

Since (v;), are independent, o (z9) = o (), for every 1 < i < N. We have shown that for
every 1 <i < N, o, (z0) = o, (2), for every z € U,,, and therefore (a;)) | are smooth. [

Using Propositions [3.7 and [3.8] (with G = X = GL, (O), a = id) we obtain the following:

Corollary 3.9. Let 7 be an irreducible supercuspidal representation of GL, (F) and let W €
W (m,¢). Then for a =m(ay,...,an—1) and k € GL,, (O) the function f(a1,...,an-1,k) =
W (ak) is an element of S ((F*)"™" x GL, (0)).

Proof. Using Proposition@we write W (ak) = SN |y (k) Wi (a), where a; : GL,, (0) — C
are smooth. Since GL,, (O) is compact, (Ozi)ij\il are Schwartz functions. We then use Propo-
sition to obtain that f; € S ((F*)"_l), where f; (a1,...,a,_1) = Wi(m(ay,...,a,_1)),
and the corollary follows. 0

3.1.5. Finite functions. Before stating the asymptotic expansion of Whittaker functions in
the general case (where 7 isn’t necessarily supercuspidal), we shortly review the topic of
finite functions of (F*)". We will mainly need Proposition [3.11]

Definition 3.10. Let G be an Abelian [-group. A finite function f : G — C is a smooth
function such that the translations of f span a finite dimensional space.

Proposition 3.11. f: (F*)" — C is a finite function if and only if

f € spang {H Xi (a;) log™

i=1

€L, xi: F* — C"is a character ofF*}.

(See |JL70L Section §]).

Recall that every character x : F* — C* can be written uniquely in the form x (a) =

la|™ - w, (a) where 7, € R and w, : F* — C* is a unitary character. We denote R (x) = ry.
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3.1.6. Asymptotic expansion of Whittaker functions in the general case.

Proposition 3.12. Let m be a generic irreducible representation of GL, (F). Then there
exist finite functions (&)521 on (F*)n_l, such that for any W € W (m, 1)) there are t functions
(¢:)i_, € S (F™Y), such that

W(m (Cbl,. .. ,an_l)) = Zfl (al,. .. ,an_l) : sz (al,. .. ,an_l),
i=1

where a =m (ay,...,a,_1) (See |[JPSSTI, Proposition 2.2]).
Consider the Haar modular function of the Borel subgroup B, C GL,_1 (F), dp,_,

An—l — C: 551 (dlag (ala s 7an—1)) H1<z<]<n 1
finite function (it is a positive character) and therefore by modlfylng the set (&)1<;ey In
Proposition it is clear that one can write

. The function 52 _, isanon-vanishing

W( —52 Zgz al,...,an_l)-gbi(al,...,an_l),

where a = m (ay,...,a,-1) and ¢; € S (F"1).
Furthermore, from Proposition [3.11} there exist finite sets (Cj);:ll of characters y : I'™* —

C* and non-negative integers (rj);.:ll , such that

n—1
(€:)iy C spang {X(ah ) = [ ] X (a5)log™ Jag| | x; € Cj,my € Z] 0 < my < ""j} :

j=1
Denote for such sets and integers
n—1
X =Xo, 0 = {X<a17"-7an1) =[x (@) tog™ |a;| | x; € Cj, my € Z |0 < mj; < 7“3}-
j=1

We may assume that {&; | 1 <i <t} = X, as X spans the original set.
Finally, using Proposition [3.§ (as in Corollary [3.9), we obtain the following:

Proposition 3.13. Let m be a generic irreducible representation of GL,, (F). Then for each

1 < j < n—1, there exist an integer r; and a finite set C; of characters x : F* — C¥,

such that for X = X, )l and for any W € W (m, ), there are functions (¢€)gex C
Jo Jj=

S (F" 1 x GL, (0)), such that
W (ak _52 (@)Y &(ar,. o an) - de(ar, ... a1, k),
gex
for every a =m (aq,...,a, 1), and k € GL, (O).
Remark 3.14. One can show that if 7 is a generic irreducible unitary representation of

GL, (F'), then the sets C; can be chosen, such that for every x € C;, ®(x) > 0. [JS90]
Section 4, Proposition 3]

3.2. Convergence. Before proving that J; , converges absolutely for s in a right half plane,

we prove some statements used throughout the proof.
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3.2.1. Theorems regarding the diagonal part of an Iwasawa decomposition of uy. We will
need the following theorem regarding the diagonal part of the Iwasawa decomposition of
some matrix.

We follow [JS90, Section 5, Propositions 4, 5.

Theorem 3.15. Let Z € M,, (F) be a lower triangular nilpotent matriz and uyz = Wy, m (Im Ii) w

Suppose uy = nytzky is an Iwasawa decomposition of uy (i.e. ny € Nopy, tz € Aoy,
ky € Kop). Write t; = diag (ty,...,tam). Then |t;| > 1 for odd i and |t;| < 1 for even i.
Furthermore |t| = |tam| = 1.

Before proving this theorem, we discuss some properties of the maximum norm of the
exterior power of the space spanned by row elements (e;);_;.

Let V be a finite dimensional vector space over F. Let {vy,...,v4} be a basis for V. For
every 1 <r < d, we define a norm on A" (V'), the r-th exterior power of V, by

E irig..ipVip N NV,
1<i1 << <d

= max |G,
1<ii << <d

Remark 3.16. Note that for v € V, v = 3% biv; we have [|v]| = maxy<;<q |b;] (here 7 = 1).

Claim 3.17. This norm has the property that forevery 1 <r <d—1,a € V" (V)and v € V,
the following inequality holds:

[ Aall < floff fla]-

. d
Proof. Write v =35 bjvjand a =), o i <4 Qiis.i,Viy A+ Av;,, Where a;,, i, b; € F.
Then

d
VA= Z Z bjaill-%irvj N Uiy VANCIEIAN (U

j=1 1<ij<--<ip<d

We get that the coefficients of v A a are sums of the form > (—=1)°b;ai,i,. 4. These have
absolute value

‘Z (=1)bjais,...,

and therefore the norm of v A «, which is the maximal absolute value of the coefficients of
v A @, is not greater than ||v]| - ||«]|. O

< gmax  [bjflai | < max b max _ lai | = ol - fledl

We now take V' to be the space spanned by the row vectors (e;)!_, C F'*",
Proposition 3.18. For a matriz k € K,, = GL, (O) and 1 <r < n, we have
[(erk) A (ersrk) A= A (enk)|| = 1.
Proof. All matrix elements of k£ are in O and therefore have absolute value < 1. Hence
le;k|| < 1. By using the inequality ||[v A «f < ||v| ||| repeatedly, one gets

l(erk) A (erstk) A+~ A (eab)ll < Jleskl] l(ersak) A--- A (enk)]
~———
<1
< lerik) A Aleak)l] < -+ < flenk]) < 1.
36
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On the other hand
(erk) N+ A (enk) =detk-(ex A+ Neyw),
and therefore
l(exk) A -+ A (enk)|| = |det k| - |lex A -+ Aenl| =1,
which implies
L=[[(erk) A= Alenk)|| < [[(e2k) A= A(enk)|| < - < [[(erk) A= A (enk)]]
and we get the desired equality |[(e.k) A--- A (e k)] = 1. O
Corollary 3.19. For every k € K,, and every 1 < i < n, we have ||e;k| = 1.

Proof. We have seen already that 1 = ||(e1k) A--- A (eyk)||. On the other hand, as in the
previous proof

L= [[(erk) A= Alenk) | < lexkl] - --- - flenk]] < 1,
hence
lek] - -~ - flenk] = 1.
Combining this with the fact that ||e;k|| < 1, for all 1 < i < n (since the entries of k are in
O), implies ||e;k|| =1, for all 1 < i < n. O

Proposition 3.20. Let uy = nyztzky where ny € N, tz = diag (ty,...,t,) € A,, kz € K,
and let 1 <r <n. Then |[(e;uz) A+ A (equz)|| = [trtryr -+ tnl-

Proof. Write
(GTUZ) A A (enuz) == (&,nztzkz) A A (ennztzl{iz) .
Denote T,

ngs Lty Tk, =V — V the maps T),, (v) = vng, T}, (v) = vtz, Tk, (v) = vkz. Then
the above wedge product equals

(ernztzkz) A A (ennZtZkZ> = (TkzﬂzTnzeT) A A (TsztzTnzen>
_ An—r+1Tszn—7'+ljﬂtz ((Tnzer) A--- A (Tnzen>> .

We notice that the subspace V, spanned by {e,,...,e,} is invariant under 7,,,. The matrix
of T,,, Iv,, with respect to the basis {e,,...,e,}, is the transpose of the sub-matrix of ny
consisting of its last n — r + 1 rows and columns. Therefore the restriction of 7;,, to V, has
determinant 1 and we have

(Th,er) N N(Th,en) =detT,, Ty, - (e, A ANew) =€ A+ Aep.
Thus
AT N ((Ta,en) Ao AT en)) = AT AT (e, Ao Aey).
Since Ty, e; = eitz = tie; and A" T, (e, A~ Nen) = (ekz) A+ A(enkz), we get

AT N (en A Aey) =ttty ((ekig) A A (enkz))
Taking ||-||, we get
[(eruz) A== A(enuz)ll = [trtrpr - - tal [(erkz) A - A(enkz)|| = [trtpy - tl,
where the last step uses the previous proposition. 0]
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We now move to the proof of Theorem [3.15]
Proof. We first write the form of the matrix uz = wy,m (I’” [i) w ! where Z € M, (F)

m,m
is a lower triangular nilpotent matrix. We recall that for an arbitrary (a;;)
Wi (a35) Wt = (ag_l(i)(,_l(j))ij where o is the permutation

)

(1 2 3 ... m m+1 m+2 m+3 ... 2m
9=\1 35 ... 2m—1 2 4 6 ... 2m

we have

i3

The diagonal of (I’" [i ) consists of the diagonal of the identity matrix I5,,. It is preserved
under conjugation. We compute which non-diagonal entries of uy can be non-zero. These
are elements having index (4, 5), with (67 (2), 071 () = (¢, m + j'), with 1 <4’ < m and
1<j <mandi >j ie i=0(i')=2i'—1,j=25. We notice that i > j, since i’ > j'+1,
i.e. uz is a lower triangular unipotent matrix. We also get that uy has the row vector e;
as its i-th row for even 4. Similarly, uy has the column vector el as its i-th column for odd
i. We illustrate the shape of uz by writing it for m = 4: (The matrix has zeros above its
diagonal)

1
0 1
0 %= 1
10 0 0 1
YZ=10 % 0 = 1
000 O0O01
0 « 0 = 0 = 1
0 00O0O0OO0DO0OT1
We have shown that uze; = e; for even ¢. By the previous claim, we have that for even ¢
[(eiuz) A~ A (eamuz)|| = [titizs -~ tom|
e A (eirauz) A -+ A(eamuz)|| = [titivr -+ - tam| -

From the inequality [[v A o < ||v|| |||, we get
le;s A (eirauz) A=+ A(eamuz)| < [[(eiruz) A=+ Aleamuz) || = [tipr -+ tom|
and hence |t;| < 1, and the theorem is proved for even i.
In order to prove the theorem for odd i, we write uy = nytzkz and therefore
ky; = t;n}luz.

For odd 7, we have seen that the ith column of uz is the column e!, which implies that the
1th column of n}luz is the same as the ith column of n,;'. This implies that for odd i, k; =
t, 'n;'uz has the value ¢, in the i-th place on the diagonal. Since k; € Ky, = GLa,, (O),
we get for odd 1, |ti_1‘ <1,ie. |t;] > 1, as required.

As for tl and tQmI since €om — €Uy = Bgmnztzk’z = tgmegmkz we have

1= [leaml| = lltzmezmbkz|l = [tam| leambzll = ltam| le2mll = [t2m| -
Regarding t;, write kze! = t,'n uzel = t,'el = t7'e}, and therefore e k!, = t;'e;. And
since kY € Ko, this implies
_ _ -1
L=ler]l = |lekz|| = ||t ea]| = [t Nleall = [t2]
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as required. [l

Proposition 3.21. Let Z € M,, (F) be a lower triangular nilpotent matriz and uy =
Wynm (I’" Ii) w;ﬁm. Suppose uy = nztzky is an Iwasawa decomposition of uy (i.e. ny €

Nop, tz € Aopm, kz € Kop). Write t; = diag (t1,...,tom). Denote by || Z|| the mazimum
norm of Z. Then

max (1, [|Z[)>" <[] [l

1<i<2m
i 18 odd
Proof. Denote for 1 < k < 2m, s, = ||(exuz) A--- A (eamuz)||. By Proposition Sk =
[t~ tom|. The element (exuz) A --- A (eanuz) is equal to the sum
(ekuZ) ARRERA (e2muz) = Z @iy i — k41 G AN ARERA Cigm—kt1-
1< <82m—k+1
By writing e;uz as a linear combination of {e;, ..., ea,} using the coefficients of uz, we see
that the coefficient a;,. 4, ,., equals to the minor of uz consisting of the last 2m — k + 1
rows and the columns y,...,%9, 1 columns. Because of the special shape of uz, we see

that every non zero element of uy is such a minor with £ odd: we take for an element at the
kth row its column, and the last n — k columns of the matrix - this gives a lower triangular
matrix with a diagonal consisting only of 1 and our element, and therefore its determinant
value is equal to our element.

Therefore, we get that for all k, ||(exuz) A -+ A (eamuz)|| > |lexuz|| > 1 and

| | |(eruz) A+ A(eamuz)|| > max |ugzeg| = ||luzl| .
1<k<2m
1<k<2m

Since uy consists of the same non-zero elements as Z, except for 1 on the diagonal, we have
|uz|| = max {1, ||Z||}, and we get

I sk =max{1)Z]}.
1<k<2m

From the previous theorem, we have

Sk = |th - tom| < H It;] .
1<j<2m
7 is odd
Therefore, we get
2m

max{L |Z|[} < [ ] 16| -
1<5<2m
7 is odd
as required. O

Proposition 3.22. We can choose smooth functions Z — nz, Z — tz and a continuous
function Z v kz from M, (F) to Noy,, Aom, Kaom respectively, such that nztzkz = uy is an
Twasawa decomposition of uz, for every Z € M, (F'). Furthermore, one can choose these,
such that tz € Aoy (i.e. tz = diag (ty,ta, ... tam—_1,1)).
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Proof. The cosets of M=)/, o) form a cover of M,, (F) of pairwise disjoint compact-open
subsets. We choose a representative for each coset such that

My, (F) =) (Zi + M, (0)).
i€l
Let uy, = n;a;k; (where n; € Noy,, a; € Aoy, ki € Kop). Then for N € M,, (O) we have

B I, Z\ (L. N\ _,
Uz,+N = Wm,m Im [m wm,m

= Uz, " UN-

Since N € M,, (O), we have that ux = wy,m (I ]JTVH) w;jm € Ky, and therefore uy, n =

n;a; (k;uy) is an lwasawa decomposition.
We define for every N € M,, (O) and i € I, ng,on = ni, tz,+n = Gi, kz,+n = kjuy. Since
Z; + M,, (O) is compact open, it is clear that we have constructed functions as required.
Regarding the last part - write tz = diag (1, ...,t2,). By Theorem [tom| = 1 and
therefore by replacing kz with diag (1,1,...,1,ts,) k7 and tz with ¢z -diag (1,1,...,1,t5, ),
we get an Iwasawa decomposition with t; € As,,_1. It is clear that ¢ is still smooth after
this modification. ]

3.2.2. Conwvergence proof. We now prove a theorem regarding the convergence of the integral.
We follow [JS90, Section 7, Proposition 1].

Theorem 3.23. Let m be an irreducible generic representation of GLa, (F'). There exists
a real number v, 2 € R such that the integral Jr (2, W, @) converges absolutely for every
z € C with Re (2) > rpp2, W e W(m,¢) and ¢ € S (F™).

Proof. We can assume that m has a unitary central character: Suppose that the theorem has
been proved for representations with a unitary character. We can write for a € F*, w, (a) =
x (a) - |a|” where x is unitary and 7 = R (w;) € R. Then 7 = 7 - det 2= has y as its central
character and therefore 7 has a unitary central character. Note that J. (z + =W, gb) =
Jrw (2, W, @) and therefore J; (2, W, ¢) converges for every z with Re (2) > 7.2 — =

We suppose that 7 has a unitary central character. Denote s = Re (2). Using the Iwasawa
decomposition G,, = NAK where N = N,, the unipotent matrix subgroup, A = A,, the
diagonal matrix subgroup and K = K, = GL,, (O), we write (see also Subsection

/N\G (/B\M W (wmm (Im ii) (g g>)‘ ¢ (—tr (X))|dX> |6 (2g)| |det g|* dg
= /A da /K dk (631 (a) /B L <wm,m ([m ;fn ) (a’f ak))

where B = B,, = N,,A,, = A,,N,, is the upper triangular matrix subgroup of G,,.

dX) |6 (eak)| |det (ak)|”,

Conjugating by (a a) and identifying 5\ with lower triangular nilpotent subgroup of

M, which we denote N~ the integral gets the form

/A da /K dk / dx (531 (a) | (wm,m (a ffo> (Im “_;:fa) (k k))D 16 (cak)| |det (a)[* .




am’am .« ..

Then

Lo (") () () =t (e () (7 00) ()

Since w, is unitary, |wy (a,)] = 1. Using the following measure decomposition of A:
dpa,, (d'ay) = dua, , (') dpp- (a,,) (where we think of A,,_; C A,, by the embedding
diag (a1, ..., am_1) — diag(a1,,...,am_1,1)), we get

/MM/%J%/M% A (o () (72 0)))
16 (b et () lan ™

By Fubini’s theorem, it is enough to show that the following integral (obtained by exchanging
order of integration) converges in a right half plane

(3.1)
[/ f oo () () )i
[ Joteanmllan ™ da

We notice that for a fixed k € K, [ |6 (cank)||am|™ day, is a local zeta integral of Tate
(see Theorem and therefore converges absolutely for Re(s) > 0. We claim that this
integral is uniformly bounded on K: Since ¢ is a Schwartz function, its support is open and
compact and therefore the set

supp¢ - K ={x -k | x € suppg, k € K}

is compact, as an image of a compact set (supp¢ X K) under a continuous map. This set is
also open, using the fact that supp¢ is open and that multiplication by an invertible matrix
is a homeomorphism. Therefore the indicator function 1xgupps x 15 @ Schwartz function.
Since ¢ is a Schwartz function, it is bounded, i.e. there exists M > 0 such that |¢ (x)| < M,
for every x € F™.
It is clear that |¢ (z)| < M - Ixsuppe-k (), for every € F'™, and therefore

|6 (camk)] |am|™ day, < M - / IXsuppo-k (Eamk) |am|™ day, = M - / IxXsuppo-& (E@m) |am|™ day,.
P P P

The right hand side converges for every s € C with Re(s) > 0 as a local zeta integral of
Tate (see Theorem . The right hand side also does not depend on k € K and therefore
fF* eam W am|™ dam is uniformly bounded for &k € K, i.e. for every k € K, we have
[ |0 (eam k)] |am|™ day, < C(¢,s), where C'(¢,s) is a positive constant depending on ¢
and s only.
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We are left with the integral

/A o /K dk / dx (5; () |W <wm7m (a' a,) (Im a'}f@’) (k ’“))D det ()]

We substitute o/ *Xa' = Z, dX = 65" (d')dZ

J_ LGt )= £)C Q)i

We denote the entries of o' = diag (a’l, ay, ..., a,

m

—15 1). We compute

/
a -1 . roo / ro / -1
Winm ( a’) Wy = Wi mdiag (al, Aoy ooy Q15 1,07, Ay, ..., 0, 1) Wym

For 1 <7 < m, we have that the 7,7 + m diagonal elements of (“/ a,), which have value «
for i # m and the value 1 for i = m, move after conjugation to o (i) = 2i— 1,0 (i +m) = 2i.
i.e. we get the following matrix which we denote b

/
a -1 : ! / / / / /
b= wnmm ( a’) W, = diag (al, Ay, Ay, Aoy ooy Gy 1y 1, 1, 1) .
We denote wy, (Im Ii ) w;}m = uy. We use the Iwasawa decomposition for the element

uz: uz = ngtzkz where ng € Noy,, tz € Agy_1, kz € Koy, and ny, t; are smooth in Z (see
Proposition [3.22)). Since bnzb~! € Ny, the last integral is equal to

/AM da’/de/N dZ | 65° (a') |4 (bngb™")| 'W (btzkzwmm (k k))‘ det (@)

We now recall the asymptotic expansion of Whittaker functions (see Proposition |3.13]).
There exists a finite set of the form X = X(Ci,ri)Qinl—l such that for every W € W (7, 1), there

exist Schwartz functions (¢¢)..y © S (F?™7' x GLay, (O)) such that

1
W (ak) =63,  (a)-) &(ar, ... azm1) be(ar, ..., aam1, k),
geX
for a =m(ay,...,a2,_1) and k € GLy, (O).
Denote t; = diag (t1, ..., tom), b = diag (b1, . .., bay,) = diag (a’l,a’l,ag,a’z,... a ., al 1,1

y 'm—1 Y'm—1>
bit;

big1tipr”
Since a Schwartz function on a product of groups is the sum of products of Schwartz func-

tions on each group, we can write ¢ (ay, ..., dgm 1,k) = Yoo, (H?Z{l qbé’j (aj)> gzﬁz’K (k),

where gbé’j € S(F) and qﬁé’K € S(GLyy, (0)). Therefore, it suffices to consider the conver-
gence of

bty =m(ci,...,Com—1), where ¢; =

/ da’ / dk / det (a')|" dZ63 () 6, (bt2)
Am,1 K -

5 () e ()|

£eX i=1
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Using the triangle inequality, it suffices to show that an integral of the following form con-

/ da’/ dk/ dZ |det (a)|* dZ55* (a') 5%3%_1 (btz) -
Am,1 K -

ool (e )

€ (ers -y cam—1)] H | (¢
j=1

for all W e W (m, ), £ € X, ¢ € S(F), ¢F € S(GLy, (O))
is a Schwartz function it is bounded, and since K is a compact

First note that since ¢
set, our integral is bounded from above by
2m—1

M / da’ / 47 [det (a)[* dZ632 () 83, (bt2) |E (crr - eom )| [] ¢/
— - j=1

verges:

for a positive constant M. Therefore, it suffices to show that this integral converges
In order to proceed we use the following relation between dp, _, and dp,,

(0) b5 (@)= T[] lail™" =Ideta|”

2
5BQm 1

1<i<m—1
Thus it suffices to show that the following integral is finite
2m—1
/ dZ/ ( B (tz) € (crs s Comat))] H !(ﬁ (cj)’ |det (a’)|s_1> .
- Am—1 7j=1

a; _to

toi—1 —

1 f— . / .
Since by;—1 = by; = a;, we have cg;_1 = b O T T e
a’
) - a}, where a! € F*, to get ¢y = —+—, det (d/) =
1+1

P = Hmi‘l (tQJ t2_31+1

We substitute a; i

det () I 22|

: I — C* are charac-

tQj

Hzmil X; (¢)) log"i |c;|, where x;

We also write & (¢q,...,Com_1) = i
ters, and 0 < k; € Z, and therefore we are left with the integral
m R(x2;j-1) m—1
loj—1 ! 1 [ t2j-1 koo q | 2i—1 l2j+1
dZ /l t J 25—1 J 10 2j—1 J J

/— / L ( B (12) H Loj ¢ to; & toj : loj

m j:1 j:1

m—1 " i R(x24) "
a’l a’ A B
&% ( j ) log"™ det (")
=1 ajii /) |G 41
By Fubini’s theorem, it suffices to show that the following integrals converge
R(x2j-1) m—1 j(s—1)
% H toj_1| ! 21 toj—1 logh21 toj—1 toji1 |’ 47
OBz 2j loj & loj loj ’
N— j=1 J J J j=1 J
m—1 a’ " R(x25) "
/ ¢ (_J ) g fes® det (a”)|"" da”"
Am—1 G271 i1 @541 @541
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Regarding the first integral, Denote ®; (z1,...,2,) = [/, |q§2j_1 (z;)]. @1 has a com-

t2z

pact support and therefore there exists R > 1 such that if

ot te
@1(t2,t4,..., tn>_0

Consider the function s, : (F*)*™ — C* defined as

s (Upy oy Ugpy) = H

1<i<j<2m—1

1 m—1

UAZ'H

Y
j=1

J(s—1 R(x25-1)
U2j41 Ugj—1 !

u2j

log"=t | =21

) m
11
j=1

This function is smooth as a product of such. It is therefore bounded on the compact set
{(u1,...,usm) | % < |us| < R}, ice. there exists My > 0, such that g, (us, ..., usm) < M,
whenever % < |u] < R, for every 1 <i < n.

®, is a Schwartz function and therefore it is bounded, i.e. there exists M, > 0, such that
®, (z) < My, for every x € F™. We now claim that for every Z € N/~ we have the inequality

t1 t3 tom—1
¢, (E, PR m) s (t1, .. tom) < MM, - 1X{Z/|||Z’||SR2W2} (Z).

U; Uz Ug;

t21

If

tr1v1al.
If for every 1 < i < m,

> R for some i then we have 0 on the left hand side and therefore the inequality is

t27,

3157 1 S |t2i_1‘ S R|t21‘ S R and

therefore & < |to;| < 1. From the inequality max (1, ||Z||)ﬁ < [Ti<k<2m [tr] (Proposition

1S O

3.21), we have ||Z|| < R®™. Therefore 1X{Z’H|Z’||<R2m2}(Z) = 1. Since we have that

% S |t2i|a|t2i—1| S R, we have s (tl,tg,...,tgm_l) S Ml, and since (I)l (l’) S Mg, for

every z € F™, we have

t1 13 tom—1
1 <E7 PR E) ps (L1, .. tom) < My My = My M, - 1X{Z’H|Z’||§R2m2} (Z).

Since N~ C M, (F) is closed, the set {Z’ eN|Z| < R2m2} is compact as an intersec-
tion of a closed subset and a compact subset of M, (F'), and therefore

t1 ¢t tom—
/_@1 (—1,—37..., 2 1),“8 (t17-‘-at2m)dZ§M1M2[\[_ 1X{Z’H|Z’||§R2m2}(Z)dZ7

Lo 14 lom
and the right hand side is finite.

Regarding the second integral, substituting af = [[[; @ il " vields
(3.2) / H ’¢2j /// | }logkgj ‘a///H { " R(x25)+i(s—1) d "

m 1 ] 1
This integral converges as a multiple local zeta integral of Tate (see Theorem for s, such
m—1
that 3 (x2;) +7 (s —1) > 0, for every j, i.e. s > max (1 - w> .
j=1
To conclude, we get that J; (2, W, ¢) converges, for every z with Re (2) > 7, ,2 where

rm/\z:max({O}U{l—w|1§j§m—1|XEC2j})'
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This constant depends on the representation 7 only. [l

Remark 3.24. Using Remark we get that if 7 is unitary, then R (x) > 0, for every
x € Cj for every j, and therefore 0 <7, 2 < 1.

Remark 3.25. When 7 is unitary and supercuspidal, we have that W (ak) = f (a1, ..., agm-1, k)
for f €S ((F*)Zm_1 x GLam (0)), and a = m (a1, .., an-1), k € GLay, (O). This implies
that the Schwartz functions ¢* can be chosen to vanish at zero, and therefore the multiple
Tate integral converges for any s. The only integral to consider in this case is ,
which converges for s > 0. Moreover, if 7 is supercuspidal (not necessarily unitary), and if
¢ (0) = 0, then (3.1)) converges for all s. We obtain by using the same arguments as in the
beginning of the proof the following corollary:

Corollary 3.26. If m is supercuspidal, then Jy ., (s, W, @) converges absolutely, for every
Re (s) > —%, W eW (m ), ¢ € S(F™). Furthermore if ¢ (0) = 0, then Jr (s, W, ®)
converges absolutely, for every s € C and W € W (w,1)).

Remark 3.27. Following the steps of the proof and using the observations of the previous
remark we also get the following proposition:

Proposition 3.28. If 7 is supercuspidal (not necessarily unitary), then for every s € C, the
integral

/A dd /K dk / X (5;1 ()W (wmm <Im ffn ) (“'k" ak)) @D(—trX)) Idet (@)

converges absolutely.

3.3. Non-vanishing. Let 7 be an irreducible unitary generic representation of GLa,, (F)
and let 7, r2 € R such that J., (s, W, ¢) converges for every W € W (7, ), ¢ € S (F™) and
s € C with Re(s) > 72 (See Theorem [3.23). In this subsection we show that for every
s € C with Re (s) > ry 2, the bilinear map (W, ¢) — Jr 4 (s, W, ¢) isn’t the zero map.

We begin with a recursive expression for the Haar measure on the quotient space y, \ “t (%),

3.3.1. A recursive expression for the Haar measure on y,\%". We give an expression for the
Haar measure on y,\“" using the Haar measure on y,_,\%"-1, where G,, = GL, (F). Here
K =GL, (0) and Z = Z (G,,) is the center of G},. The proofs are omitted.

Proposition 3.29. For a smooth f : y,\" — C, the following holds

[ orwa= [ e () o) vt

Let v, : G, — n,\" be the quotient map. We give another expression for the previous
integral in the special case where suppf C v, (P, K,) where K, C K is a congruence
subgroup, i.e. K, = I, + w"M, (O).

Proposition 3.30. Suppose that f : 5 \% — C is a smooth function and suppose that
suppf C v, (P, - K,.) where K, C K. Then there exists a positive constant Ck, > 0 (de-
pending on K, only) such that

[ twace [ (0)8)
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3.3.2. Proof of non-vanishing.

Theorem 3.31. There exist a Schwartz function ¢ € S(F™) and a Whittaker function
W e W(rm, ), such that J (s, W,¢) =1 for every s € C with Re (s) > ry s2.

We follow [JS90, Section 7, Proposition 3|.

Proof. Let W be an arbitrary Whittaker function and let K,, w be a congruence subgroup
of K = GL,, (O) such that W is invariant to right translations of elements of the form

0 ko where kg € K,,, w. Let ¢ : F™ — C be the indicator function of the set €, - K,,, w.
The set €,,, - X, i consists of the last row of elements of K, w. €5, - K, w is an open compact
set as K, w is an open-compact subset of M,, (F') and the projection maps X — X;; are
continuous and open. Therefore ¢ is a Schwartz function on F. Since P, is the stabilizer
of €,, under the right action of P,,, it is clear that the integrand of J, , (s, W, ¢) has support
(in the variable g) which is contained in a subset of v, (P, K, w) (where vy, : G, — n,, \&™

is the quotient map). By Proposition [3.30]

g 0
Om
J7r,1/1 (57[[7¢) :C’T/n/ / ! Wim,m (Im ;() 0 1
Gm—1 JNZ m g 0 ———
Nm—l\ m Om 0 1

- |det g|"™" dg,

where C] is a positive constant (which equals Ck,, ,,, - ik, (Kmw))-
Denotefor 0 < k<m —1

Ik (S, W) _ / ) ’detg’871+2(k+lfm)
Nk

\ k
T 0 X 0 g 0 0
0 Imfk’fl 0 0 0 [m*k "
/N W wam | 0 L. 0 5 5 dXdg.
e 0 0 0 Iy g1 m 0 I, &

Multiplying by a suitable constant, we get that [,,,_1 (s, W) = J,, (s, W, ¢) for some Schwartz
function ¢.
We give a recursive expression for [.

. o Z Ok><1
We first write X = ( v o

matrix, and y € F'***. The integral becomes

Nk\Gk k_ Flxk

) where Z € N, is a lower triangular nilpotent k& x k

b0 0 Z 0 0
01 0 YO0 0 g 0 |
wlw 0 0 Iypy OO0 0 0 I m
mmlo 0 0 I, 0 0 0 g 0
00 0 01 0 m 0 Ik

00 0 0 0 Inxs



We conjugate by the matrix and substitute Yg = Y’ dY’ =

dY - |det g| to get

(3.3)
LLb0O 0 Zo0 0
01 0 00 0
Ik(s,W):/ dg/ dZ/ dY" [det g2 W wpm 8 8 IMB’H 19 8 0
Nk\Gk o Flxk k 0
00 0 01 0
00 0 0 0 Ly,
L 0 0 0 0 0
g 0 0 01 0 Y 0 0
0 Ly " 0 0 Iygs O O O
0 g 0 00 0 I, 0 0
m 0 s 00 0 01 0
00 0 0 0 I

For an arbitrary Whittaker function W € W (m,4¢) and an arbitrary Schwartz function
® € S (F1), we define Wy 4 as the function

I, O 0 0 0 0
0 1 0 0 0 0
B 0 0 Iyyy 0 0 0
(3.4) Wk@(g)—/FMW 9l o o 0 I 0 ® (u) du
0 O 0 0 1 0
0 0 0 0 0 I,_k

Since ¢ has compact support, this is an integral of a Schwartz function. It results in a
Whittaker function, as a linear combination of right translations of W.
We now compute Iy (s, W’), where W' = Wy ¢ for arbitrary W € W (m,v), and ¢ €
S (Fkxl).
After substituting in and computing several conjugations, we get the following
expression for Iy, (s, W'):
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/ dg / dz / dy / du |det g|* 2™ & (u)
Nk\Gk — Flxk Fkx1

k

I, 0 0 0 Zgu 0 I, 0 0 Z 0 0
0 1 0 0 Yu 0 0 1 0 0 0 0
0 0 Ijyng1 O O 0 0 0 Ihg1 O O 0
W wmm o 0 "0 I, gu 0 00 0 I,0 O
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 Ipk 0 0 0 0 0 Ik
I, 0 0 0 0 0
g 0 0 0 1 0 Y 0 0
0 Ln—k m 0 0 Ing—1 O O 0
0 g 0 0 0 0 I, 0 0
mn 0 Ln—k 0 0 0 0 1 0
0 0 0 0 0 Inm—gr
I, O 0 0 Zgu 0
0 1 0 0 Yu 0
10 0 Lk O O 0 . . 1
Denote M = 0 0 0 I, gu 0 . We compute the conjugation wy, , Mwy, ..
0 0 0 0 1 0
0 0 0 0 0 Ilpxa
As usual, (wm,me;L’lm)ij = M,-1(3,0-1¢j)- The diagonal is preserved under conjugation,

and the only non-diagonal elements we need to consider are those with (71 (i),07!(j)) =
(/,m+Ek+1)where 1 <i <k+lorm+1<7<m+kie.

where 1 <7 <k + 1, and therefore i < 2r < 2(k 4 1) = j. Therefore, the conjugation is an
upper triangular unipotent matrix. The only possible non-zero element above its diagonal is
the element having j =i+1,ie. 2(k+1)=i+1,ie. i=2k+1=0(k+1) < ' =k+1.
Therefore this element is M1 m+k+1 = Yu. Therefore, W (wmme*}mg) = (Yu)W(g),

m

for any g € GLg,, (F'). Thus, the integration by w results in exchanging the function ® (u)
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with its Fourier transform ® at the point Y, and we get the following expression for I (s, W"):

/ dg / dz / dY |det g[*T2* ™ & (V)
Nk\Gk I; Flxk

IO 0 Zo0 0
01 0 00 0 g 0 0
wlw 0 0 Inygy O 0 O 0 Iy m
mmlo 0 0 I, 0 0 0 g 0
00 0 01 0 m 0 Ins
00 0 0 0 Iy
I, O 0 00 0
01 0 Y o0 0
0 0 Ingy O 0O 0
00 0 IL,0 0
00 0 01 0
00 0 0 0 Iy

Since the Fourier transform is a bijection between the space of Schwartz function to itself,
we can choose ® to be any arbitrary Schwartz function. Let ®; s be a Schwartz function

such that m equals to the indicator function of an open compact subset Uy C F1*F,
such that for every y € U, w and g € GLy,, (F)

I, 0 0 00 0
01 0 YO0 0
0 0 Inygs OO0 O B
Wi910 0 0 1,0 o0 =Wg)
00 0 01 0
00 0 0 0 Injp
Therefore, we have
(5. Weay) =C- [ dg [ azlderg .
Nk\Gk N
L 0O 0 Z 0 0
01 0 00 0 g 0 0
0 0 Iysgs OO0 O 0 I s m
(3:5) Wlwmml o 0 "0 0 0 0 g 0
00 0 01 0 m 0 Ik
00 0 0 0 Injp

where C' = ppixe (Upw) is a positive constant. We denote for an arbitrary Whittaker
function W € W (7,v), Wiy = Wi, and Cp (W) = pprixe (Upw) > 0, where Uy is an

arbitrary open compact set as above and @ w = 1xy,.
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Next we define for arbitrary W € W (m,¢) and ¥ € S (F*), WkY as the function
I, O 0 0 0 0
0 1 0 0 0 0
kU - 0 0 I,—p,—1 0 O 0
(3.6) W% (g) —/FMW 9o u 0 I 0 0 U (u) du.
0 0 0 0 1 0
0 0 0 0 0 Ip—p—

As before, this is a Whittaker function, as a finite linear combination of right translations of
the Whittaker function W. We now compute I (s, W") where W" = (Wk"l’)(k). After sub-
stituting (3.6 in (3.5) and computing several conjugations, we get the following expression
for Iy, (s, W"):

(3.7) Cy (WYY . / dg / Az / du |det g|* "™ @ (u)
Nk\Gk l; Fkx1
I, Zgu 0 0 0 0
0 1 0 0 0 0
0 0 I,k 0 O 0
Wi wnm g g 0 L0 0
0 0 0 0 1 0
0 0 0 0 0 In gk
I 0O 0 Z 0 0
0 1 0 0 0 0 g O 0
0 0 Lkt 0 O 0 0 In_& m
0 0 0 I, 0 0 0 g 0
0 0 0 0 1 0 m 0 I«
0 0 0 0 0 Ln g
I, Zgu 0 0 0 0
0 1 0 0 0 0
We denote M’ = 8 g(L Imbk’l 19 8 8 and compute the conjugation w,, ,, M'w
k
0 0 0 0 1 0
0 0 0 0 0 Lyp_g
We have (wm,mM’w;%lm)ij = M;_l(i),a_l(j)‘ Again, the diagonal is preserved under con-

jugation. The only possible non-diagonal non-zero elements to consider are those with
o ') =k+1, 0 (i)=7, where 1l <7 <korm+1<7<m+k, ie.

j=o(k+1)=2(k+1)—1=2k+1,
_{0(7“)227“—1 i'=r

or+m)=2r =m+r’

where 1 < 7 < k. Therefore i < 2r < 2k < 2k + 1 = j, which implies that wy, ,, M'w;.!,

is an upper triangular unipotent matrix. We compute its elements above the diagonal: the

only possible non-zero element is the one having an index j =2k + 1,7 =j — 1 = 2k, and

therefore its value is Mc/r—l(Zk:),a—l(Qk—f—l) = M,’Hm’kﬂ, which equals the last component of gu,
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which is equal to e,gu (where g, € F*¥ is the row vector having 1 in its kth position and 0
elsewhere). Therefore for every g € GLgy, (F), we have W (wpmMwy, g) = (epgu) W (g).
Applying this to (3.7), results in omitting the integration by w in exchange of replacing ¥
with its Fourier transform at the point ;9. We get the following expression for I (s, W")

(3.8) Ci, (WhY) - / dg/ dZ/ du |det g| "2 * ™ ¥ (g,.9)
Nk\Gk k_ Fkx1
0 A

Iy 0 0 0

01 0 00 0 g 0 0

0 0 Iyyy 0 0O O 0 Ly m
Wlwmml o 0 "0 0 0 0 g 0

00 0 01 0 m 0 Ly

00 0 0 0 Lng

As before, since the Fourier transform is a bijection from the space of Schwartz functions
to itself, we can replace ¥ with any Schwartz function on F*. Tet Kju be a congruence

ko 0O
0 Im—k Om
ko 0O

Om 0 ILn_p

and ko € K. As before, the set ¢ - K is an open compact subset of Fk Tet Uy w
be a Schwartz function, such that \ITk?V = IXe, K- Since Py is the stabilizer of €, with
respect to the right action of Gy, we have that integrand of I (s, W) has support contained
in v, (P Kyw) (where v © Gy — n,\C* is the quotient map). Denote W®*) = Wk¥sw,
Applying Proposition to (3.8)) we get that there exists a positive constant Cj, such that

I (s, (W(k))(k)> = O}, - Oy, (WhY) / . dg/k_dZ ka1du\detg\s+2(k_m)@(u)
. ,

subgroup of GGy, such that W | ¢ =W (g), for every g € G,

Ny _
IL,O 0 Z 0 0
01 0 00 0
00 L,,q1 00 0
W wnm | g o o I. 0 0
o0 0 01 0
00 0 0 0 I, .,

Therefore we proved that I, (5, (W(k))(k)> = CY (W) - Ij_1 (s,IW) where C} (W) is a
positive constant depending on W.

Note that Iy (s, W) = W (w,m). Since 7 is irreducible, there exists W € W (w, ) with
W (Winm) # 0, and by multiplication by a suitable constant, we can assume W (wy, ) = 1.
We define a sequence of Whittaker functions (W;)7—' by Wy € W (,¢) with Wo (wynm) = 1,

and Wi = crrb—s (Wé’jﬁ)(k), for 1 < k < m. Then Iy (s,Wy) = Ir_ (s, Wy_1), and

therefore Im—l (S, Wm—l) = I() (S, W()) =1.
As seen in the beginning of the proof, one can choose a Schwartz function ¢,, 1, such that
o (8, W1, dm—1) = Im—1(s,Wp_1), and therefore Jr, (s, W1, ¢m—1) = 1, for every

s € C in the convergence domain. O
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3.4. Rational function. In this subsection we show that in its convergence domain, J; ;, (s, W, ¢)
is a rational function in ¢~*, for fixed W € W (m,¢), ¢ € S (F'™).

Theorem 3.32. For a fited W € W (m,¢) and ¢ € S(F™), Jry (s, W, ) converges in its
convergence domain to an element of C (¢~*). Furthermore, there ezists a unique polynomial
p(z) € Clz], with p(0) = 1, such that

L = spang {Jry (5, W, 0) [ W € W(m, ), ¢ € S(F™)} = p(;_s)C 4", a7

Proof. Following the steps and the notions of the proof of Theorem we get that
Jr.s (s, W, @) equals the sum of integrals of the form

/ dam/ ’”/ dZ/ dk:@/) anb

62 t H tgj 1 ¢2j 1 tgj 1 1 kaj—1 t2j—1 m—1 t2j+1 j(s—1)
O — .
Bam—1 (tz X2 ta; & ta j=1 t2;
m—1
s—1
2] /// X2] ///) ///lj( )logkzj |a/// )
7j=1
o (kzwmm ( )> & (eamk) |am|™ wr (am),
for some (¢)7" 1 C S(F) and ¢X € S (GLay, (O)). We denote
m m—1 j(s—1)
toj—1\ 91 ( t2j—1 B 1 | E25—1 toji1 |’
F(Z X'—(J )¢J =172 ) gt | 22| e el ,
( ) 1:[ 2j—1 t2j ngj t2j = t2j
m—1
G((l///) . H ¢2] ( ///) ‘ (a/(/) ’ ///’J s—1) 10gk27 ‘ "
J )
7j=1

H (ap) = |am|™ wx (am) -

Then this integral can be written as

o /Am_l o [ az [ i (nah) F(2)G (0 () o (kzwm,m (’“ k))(b(aamk).

We use Fubini’s theorem: we first integrate by k. Since K = GLs,, (O) is compact and
the integrand is smooth in k, integration by £ results in a linear combination of expressions
of the form

/ day, /A o /N A2y (bngb) F(Z) G (a") H (a) 65 (kzwmm (k k)) 6 (canks:).,

for some points k; € K. Thus it suffices to show that this expression is of the requested
form. Next we integrate by Z. As seen in the proof of Theorem Z is actually integrated
on a compact set. Since tz and nz are smooth in Z, so is the expression ¢ (bnzb™') F (Z).
Regarding the expression ¢* (kzwym (" ,)). kz is continuous in Z, and ¢* is smooth, and



therefore we get that this expression is also smooth in Z. Thus the integrand is smooth in
7, and integration by Z results in a linear combination of expressions of the form

/ dam/ da"y (bngb™") F (Z;) G (a") H (a) ¢ (k:zjwm,m (kz 1 )) o (camk;),
F* Am_1 i

for some points Z; € N—. Note that for a fixed Z;, F (Z;) € C[q*, ¢°], and therefore we
are now left with the expressions

(3.9) H (an) ¢ (eank;) day,

F*

(3.10) /A Y (bnz,b") G (a") da"”,

where Z; € N~ and k; € K are fixed. The integral is clearly a local zeta integral of
Tate, and therefore converges to a rational function in ¢~"°. Regarding the integral ,
note that wzj b‘l) is smooth in a" (as ¢ is smooth and a” — bnzjb_1 is continuous), and
therefore (3.10) is a multiple local zeta integral of Tate. Therefore we have that Jy ., (s, W, ¢)
converges to a rational function in ¢—°.

Denote I, = spang {Jry (s, W, 0) | W € W(m,¢), ¢ € S(F™)}. From the equivariance
properties of J; , (Proposition [1.10), I, is a C[¢~*, ¢°] module. The characters involved
in the local zeta integrals of are in C' = U?;nfl C; (see also Proposition . The
integral results in an element of L (ms,w,) C ¢, ¢™*]. C is a finite set and we have
that

m—1
]7T7¢ - L(ms,wﬂ) H H L(]‘SvX) -C [q—s’qs] )

j=1 xeC

It now is clear that I, is a fractional ideal of C[¢%, ¢°]. By Theorem 3.31} 1 € I.,. We
show that this implies the existence and the uniqueness of the requested polynomial p(z).
Existence: Since C[g¢*%,¢°] is a principal ideal domain, there exists coprime f,g € C|z],

such that I, = J;EZ:))C [¢7%,¢%]. Since 1 € I, there exists h € C|[z] and an integer M > 0,

such that J;EZ:))h ()¢ =1,ie. f(2)h(2) =2Mg(2). Since f and g are coprime, f | zM,
and therefore f (¢7%) = ¢~ ** for an integer M; > 0, and therefore I, = ﬁ@ lq%, ¢%].
Writing g (2) = a-zM2p (2), where a € C*, 0 < M, € Z, and p is a polynomial with p (0) = 1,
implies I, = Iﬁ@ [¢7°,¢°], and p is a polynomial as requested.

Uniqueness: suppose that I, = Iﬁ@ g5, ¢°] = ﬁ@[q*,qs]. Then p; (¢7°) =
7 (%) - po (¢7*), where r (z) is an invertible element of C [z, 27!], i.e. 7(2) = a - 2™, where
a€C*and M € Z,ie. py(2) =a- 2™ p,(z). Since p; (0) = ps (0) = 1, this implies a = 1,
M = 0. 0

2m—
i=1

Remark 3.33. Suppose that 7 is supercuspidal. In this case, (¢') ! can be chosen, such that
¢' (0) = 0 for every i (see also Remark[3.25). This implies that the integral results in an
element of C [¢~*, ¢°] and therefore J 4 (s, W, ¢) results in an element of L (ms, w.) C[q¢%, ¢°].
Furthermore, if ¢ (0) = 0, then the integral results in an element of C[¢~™*, ¢"°| and

therefore in this case Jr 4 (s, W, ¢) results in an element of C[¢™*, ¢°].
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Remark 3.34. The calculations done in Subsection [I.2.3]show that the set I, does not de-
pend on the choice of the character ¢ (Since for a € F™*, the expressions J; (s, s ((I"” a1, )) W, gb)
and Jy p, (s, W, ¢) differ by multiplication by an invertible element of C [¢°, ¢—*]). We denote

1

L (s,m, N?) = s where p(z) is as in the theorem.

Corollary 3.35. For every W € W (m,¢) and ¢ € S (F™), Jry (s, W, ¢) and jm/, (s, W, )
have meromorphic continuations, for all s € C, which we continue to denote Jry (s, W, @)

and j,r,w (s,W.¢). The meromorphic continuations of J . (s, W, ¢) and j,w (s, W, ®) have
the same equivariance properties as the original forms.

Proof. Since we have shown that J., (s, W, ¢) has a meromorphic continuation, so does

Jew (5, W, ¢) (as it is defined using J; y-1). For every s € C with Re(s) > 7, 52, we have
(Proposition |1.10)

o (s (7)) Wep(010) = ldetal™ 6 (i 5712)) o (50,00,

and both sides of the equation are rational functions in the variable ¢7°. By the uniqueness
theorem, the equation remains valid for every s € C. O

3.5. The functional equation. Let m be an irreducible supercuspidal representation of
GLay, (F). In this subsection we prove the following

Theorem 3.36. There ezists a non-zero element v, (s) of C(q™°) such that for every
W eW (m,¢) and ¢ € S (F™) the following equation holds

T (8, W, 0) = Y (5) - Ty (5, W, 9).
Furthermore,
L(1—s,7,A?%)
L(s,m A2) "~

Ve (8) = Empp () -

where ;.4 (8) s an invertible element of C[q*, ¢°].

In this subsection, we denote G, = GL,, (F'). We denote by P, the mirabolic subgroup

OfGQm:
Py, = {(g T) IQEGL2m1(F)}-

We denote by M,, ., the Levi subgroup of G, corresponding to the partition (m,m), by Py,
the parabolic subgroup of G, corresponding to this partition, and by N,, ,, the unipotent
radical of P, .

In order to prove this functional equation, we first construct an embedding of Homp,, g, (7, V)
into Homp,,, A, (7, 1) and show that latter has dimension < 1. We show that it follows
that

dim Homg,,, (1 @ S (F™),]-]*-¥) <1,

and therefore J; , and jm/, are proportional. Since 7. (s) is the quotient of two rational

functions, it follows that v, 4 (s) € C(¢~°). We then show that 7, , has the requested form.
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3.5.1. Multiplicity one theorem. In this subsection we prove the following Multiplicity one
theorem:

Theorem 3.37. Let m be a supercuspidal trreducible representation of Ga,,. Then

dim¢ Homp, s, (7,1) < 1.

We will need some preparations in order to prove this theorem. We follow [Mat12].

Let n be a positive integer. We denote G,, = GL,, (F'). We think of G}, C G,, (for k < n),
using the standard embedding g — (g

Let

Ik )-

P, =P, (F) = {(0 1)|g€GLn L(F )}

be the mirabolic subgroup.
For any 0 < a, b such that a + b < n we define

Ga
M) = 9 | go € GLy (F) gy € GLy (F) o |
Inf(aer)

and we denote M, = MC%) ifa+b=n.

Let U, = Np_11 = {(Inl 1{) |v e F”_l}. Then P, = G, - U,. For a representation

m of P,_q, denote ®* (1) = ind}® ,; ('), where

m(pru)=(T@Y)(p-u) =) (p),
forueU,,pe P,_.
Let p > ¢ > 0 such that p + ¢ = n. We define o, , as the following permutation

12 ... p—q p—q+1 p—q+2 ... p—1 p p+1 p+2
12 ... p—qg p—qgq+1 p—q+3 ... p+q—3 p+qg—1 p—qg+2 p—qg+4

and w, , as the column permutation matrix of o, ,.
Let HYY = wy M, >t and let H q) L= wy M w>l Note that since o, (n) = n,

Dsq p.g—1""p,gq
we have that H" C Gpi.

and since (wp,qmwpvq) pg—1

We also denote

ij . Mopa(i)ope(G)

n h n
H]S—)l,q—l = {( ) | h€ H 12q) 1}

Lemma 3.38. Let p > q > 1 such that p+ 1 = n, and let
= {g € G 1|V (gug_l) =1Yu e U, ﬂHI(,Z)}.
Then S5 = P,_y - H™

p,g—1"

Proof. Let g = (") € Gy_1 and let uw = ("' %) where x € F"!, then

_ I,_ T
guglz< 1 gi)'

Let row,,_; (go) denote the (n — 1)th row of g, then ¢ (qug™) = ¥ (row,,_1 (go) - x).
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Elements of Méz) have as their last column, a column consisting of 0 at the first p places,

and therefore elements of HI()Z) have as their last column, a column which consists of zeros

at the places o,,(1),...,0,4(p). Therefore

n In—l x n—
U”mHl(’vq) - {( 1) | r €L ' | Lopa(l) = " = Lopglp) = 0} :
Therefore if Vu € U, N H,()Z), we have 1 (qgug™') = 1, then row,_; (go) must have zeros at
the places 0,,(p+1),...,0,4(p+q— 1) - otherwise if row,,_1 (go) doesn’t have zero in an

element 0,, (p+ 1) for 1 <i < ¢ — 1, we can choose an element u = (" 7) € U, N Hpq),

with = being a vector having zeros everywhere except for the (p+ i)th place, where we
can put an element such that row, 1 (go) - © = a, where ¢ (a) # 1, and then ¢ (qgug™!) =

0 (row s (g0) - 7) # 1.
It is clear from the equality ¢ (qug™') = 9 (row,,_1 (¢o) - *) and from the computation of

U, N HY that if row,_; (go) consists of zeros at the places o,,(p+1),...,0,,(p+q—1),
then g € S](JZ).
Therefore

Sgﬁl) = {g € G),_1 | row,,_1 (¢9) has zeros at the places o, ,(p+1),...,0,,(p+q¢—1)}.

We claim that this set equals P, - H 1- Regarding the inclusion P, ;- H, (” 1 C sz) let

p e P, : h e H q 1» then the (n — 1)th row of p'h equals the (n — 1)th row ofh Write h =
wp gmw, o, where m = (% ;. ), where g, € GL, (F), g, € GLq (F), then h;; = M=) =15y,
and therefore h,_; ; = My, 01 (7) and
M0y 4pts) = Mppri = 0,
forevery 1 <53 <q¢q—1.
Regarding the inclusion Szqu C Py -H q) 1, suppose g = () with gy € GL,_1 (¥) and

that row,,_1 (go) has zeroes at the places o, , (p+1),...,0,,(p+ ¢ —1). Choose any matrix
m € M(q 1> such that m,; = (go), 1, ;> for 1 <j < p. Then h = w,muw,; € H(T; 11),
(n—1)

and h and g share the same (n — 1)th row. Therefore gh™' € P,_ and g € P, 1H,
required.

q—1> &

Lemma 3.39. Let p > q > 2 such that p+ q = n, and let
s = {g € Gy | ¥ (gug™) = 1Yu € Up_y N H;j;j’} .

p’
Then S(n =P, - H()

Remark 3.40. As noted above, Hég:ll) C G,—1- We may think of all groups in the lemma as
subgroups of GL,_; (F).

Proof. Let g = (% ), where gy € GL,_5(F) and u = (%), where € F" 2 Then,

as before, gug™* = (=>97%). Again, ¢ (qug™') = ¥ (row,_2 (go) - =), where row,_ (go)

denotes the (n — 2)th row of go. We compute Up—1N HZ(,T; 11) First, we notice that o, , (p) =

p+qg—1=n—1. Elements of M 1 have zeros at the pth column at positions p + 1, ,
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p+ q — 2, and therefore elements of Hl(f) have zeros at the (n — 1)th column at positions

q—1
Opq P+ 1), ..., 0pq(p+q—2). Therefore we get
n—1 In— T n—
M%N”ﬁWBZ{( ’ J!xGF ﬂx%mﬂf’“:x%ww2fﬂ%'
As before, since ¥ (gug™') = v (row,_2 (go) - ), we get that if ¢ (qgug™) =1Vu € U,_1 N
H;gill), then row,,_» (go) must have zeros at the places o,,,(1),0,,(2),...,0,4 (p), and that

SI(,Z)A = {(go 1) | row,,—2 (go) has zeros at the places 0,4 (1),0,4(2),..., 054 (p)} .
As before, we claim that Sz(ﬁz)—l =P, - Hz(ﬁ)l,q—l' For the inclusion SZ(,Z)_I O P, o H[(ﬂ)lyq_l,
one writes ¢ = p’h where p’ € P, 5 and h € Hzgi)l,q—l‘ Then the (n —2)th row of ¢
equals the (n — 2)th row of h. Write h = wp_11mw,; ,_; where m € M;E;f}_l. Then
Op-1g-1(n—2)=n—2=p+qg—2>p—1land h, o; = My 9671 () Sincen—2 > p—1,
My 25 =0, for 1 < j < p-—1, and therefore h, 5, ,, ,;j =0, for 1 <j < p—1. Note that
for1<j<p-1

e p—q+2k—1 j=p—q+k (1<k<qg-1) "7
and therefore h,_5,, ;) = 0, for 1 < j < p — 1. Finally, 0,,(p) =n —1 and hy_2,-1 =

Mp—2,—1 = 0 (as m € G,_2). Therefore g € S;Z)_l. The other inclusion is shown as in the
previous proof. O

Proposition 3.41. Suppose p > q > 1 with p+ q = n. Let (0,V) be a representation of
P,_1, and let x be a positive character of P, N HIS?’). Then there exists a positive character
X' of P,_i N H™  such that

p,q—1’

HoumHglq) (<1>+ (o) ,X) — HomPnflﬁHf,z),l (o,%) .

Proof. Denote W = &* (V) = ®* (¢) = indjy"_;; (0/) where ¢/ = 0 ® ¢ defined as above.
Let A be the projection operator from S (P,,V) to W = ind?:flUn (0'), defined as

(Af) () = / ) S ) dan s )

Since f is a Schwartz function, for a fixed p, the integral is integrated on (suppf)p~!, and
therefore converges. A direct computation shows that Af € indﬁZﬁlUn (¢'). One can show
that A is surjective.

Let L € HoumHm (o, x). We define using A and L a distribution T = Lo A :

S (P,,V) — C. A direct computation shows that this distribution satisfies

(3.11) (T, p(ho) f) = x (ho) (T, f), Vho € P, N HY,
(3.12) (T, X\ (o) [) = 6p,_yv, (o) (T, 0" (o) [), Vyo € PoiUy,.
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Therefore the map L — Lo A defines a map from HomanHz()nq) (®* (o), x) to the subspace of
distributions on S (P,, V) satisfying the relations and . This map is injective,
since A is surjective.

We define for u € U, and g € G,,_1, ¥ (ug) = ¢ (u). This is well defined, as if u;g; = uz9s,
then uy 'uy = gog; ' € Gy NU, = {I,}, and therefore u; = us.

We have that for uy,us € U,, and g9 € G,,_1

U (uitage) = 9 (wug) = ¢ (ur) ¥ (u2g2) -

Let T be a distribution on S (P,, V) satisfying the relations (3.11)) and (3.12). We define
U - T as the following distribution:

(W-T,f) = (T, V- f).

One can check that for u € U,, we have
A(u) (V-T), f) =(T-V,f).

To show this, one uses the fact that for p € P, we have ¥ (u"'p) = ¢ (u™!) ¥ (p) f (p) and
that dp, ,u, [v,= 1. Therefore, ¥ - T is left invariant to translations by U,. It follows that
there exists a distribution S on S (G,,_1, V), such that

wern= | [ Unf(ug)dU} as (g).

(This eventually follows from the Well known fact that the averaging map o : S (P,,V) —
S (v, \"", V) defined by (a ( = [y [ (up) du is surjective)

A simple computation shovvs that for ug € U,, f € S(P,,V) we have (U -T,f) =
(W- T, p(uo) f)-

Note that since y is positive and U, N HS" is a subgroup of F"~, y must be trivial on
this subgroup (as for every a € U, N H,(,Z), belongs to a compact subgroup K,, and therefore
X (K,) is compact, but since x is positive, x [k, = 1 and therefore x (a) = 1). Therefore we
get that (T, p (u) f) = (T, f), for every u € U, N HYY.

Using both equalities yields

(T, p(w)Uf) = (T, Uf) Vu € U, N H"

p,q’
for every f € S(P,).

This implies that for gy € suppS, we have U (goug) = V¥ (go), which implies suppS C S;éfi}

and suppT = supp (V-T) C U, - Sp@ Using the decomposition Spq =P, 1[—[( q) 1, we have

that
suppT C P, U, H"

p,g—1"

Hence that map 7'+ T [ ( V) is injective.

g™
n—1UnH pyg—1°

pq—11

Consider the projection B : § <Pn 1U, X H™ V> — S( —1Un H g 1,V> defined by

B = [ o S adie@  (ve Bt ne s),

p,q—1
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This is well defined as if y; *hy = 35 'hy, then
yiys ' = hihyt € HY N (PaiUy) = Poy NHY L

p,q—1
(the sets are equal, since h =pu = u=p'he G, 1NU,={l.}).
Therefore by substituting a = a’ - 2y, 1, we get the required equality of the integrals.
One can show that B is surjective.

Consider the isomorphism ¢ — <b of § ( o 1Up X 250

pg—1

0 (y,h) = x (h)dp, v, (W) 0" (y™") ¢ (y, h)
Let T be a distribution on S (P,, V') satisfying the relations as above. We define a dis-
tribution D on & ( LU, x H™. 1,v> by (D, 6) = <T,B (¢)> Let é1 = p (yo, ho) &, for
Yo € Pr1Uy, ho € "

p,g—1*

b = x (ho) ™" p,_yum (W0) " 0" (Y0) p (Yo, ho) &,

V), defined by

A direct calculation shows that

which implies that

B (61) = x (o) ™ p,v, (10) ™" (1 (ho) A (w0) o' (40) B (2) )

which implies that, (7, B (41) ) = (T, £ )

Therefore we get that (D, p (o, ho) ¢) = (D, @), for any yo € P, _1U,, hy € H;Z)_l. This

means that D is invariant to right translations of P,_1U, X H (n ) . It follows that there exists
a unique functional £p on V, such that ( fH(m fp U {’D, o (y,h))d, (y)d, (h) (see

[War72l, Proposition 5.2.1.2]).
Now let b € H(") LN P,_1. Let ¢1 = A (b,b) ¢. A simple calculation yields

B =x 3 ) (Ae.0) (7 0770) ).

Note that for an arbitrary f € S ( U, x H]EZ) 1 V), we have
BA(D,b) f) (y~'h) =6 (0) B(f) (v~ 'h),
where §; = 5P LnE®) . Therefore

<D7 A <b7 b) 925) =X (b) 5Pn—lUn (b> 51 (b) <D7 o' (b_l) ¢> .
On the other hand one has

(D, A (b,b) ¢) =0 (b) (D, ¢),
where 6 =) (b) dp,_,u, (b), and therefore

(Do’ (b71) @) = x (1) "0 (b) " 61 (b) O, v, () (D 6)
Denote x' (b) "' = x (b) 8 (b) 01 (b) ' dp, v, (b)"'. Thisis a positive character of Pn_mH;T} L
as a product of such. Using the uniqueness of &5 we get that (o7 (b) £p,v) = X' (b)) (€p, ),

for every v € V and b € H")

pg—1 1 Pn_1. This implies that {p € HomHéfq),lﬂPnfl (0,%").
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Therefore we get the requested embedding as the following composition of injective maps:

L—LoA=T,

e e/t
T—T rS<Pn_1UnHI(,’2_1,V)_ T,

T'+— T oBo =D,
DP—>§D.
[l

Proposition 3.42. Suppose p > q > 2 with p+ q = n. Let (0,V) be a representation of

P, _s, and let x be a positive character of Pn_lﬂH(n) Then there exists a positive character

p,q—1-
X' of PN ngﬁ)lg_l, such that

HomPnAOH(n) ((I)+ (U) ’X) = HomPn72mH1(771)l,q*l <O-’ X/) '

p,q—1

The proof is similar to the proof of the previous proposition. One uses the decomposition
Sfafl})_l = nsz,@l,q_l instead of 5;73} = Pn71H£g>_1_

Now we can prove Theorem [3.37]

Proof. Since 7 is an irreducible supercuspidal representation, its restriction to P, equals
T 1 p,,, = (@) (1) (|BZT6, 5.18], [Gel70, Theorem 2.3]). We first show

dimHom,, e ((©)""7 (1),1) <1

Using Proposition and then Proposition [3.42] we obtain the existence of characters
X' Popo1 ﬂHgf;?_l — C* and " : Pmegmng_nl)vm_l — C* and embeddings of the following
form

HompzmmHﬁf,’ﬁJ ((q)+)2m_1 (1), 1) = HomPQm_mH(Qm) (((I)+)2m_2 (1) aX,)

m,m—1

Fem) ((®+)2m_3 (1) aX”) :

m—20 m—1,m—1

< Hom P,

Note that the standard embedding of HP™=Y 0 G, is HE™ and therefore

m—1,m—1 m—1,m—1>

2m—3 2m—3
omp —  Agem <(CI)+) (1) ’XH> — HomP2m72mH(2m72) <<(I)+) (1) >XN> ‘

m—1m—1 m—1m—1

H
Continuing using Proposition and Proposition repeatedly, we obtain an embedding
(2m) (((I)+)2m_1 (1) , 1) — Hom

Hom
PanmHm,m P10H§,20) (

1,1).

Since P N Hl(?g = {I,}, we have Hom (1,1) = C, and therefore

PINH)
. 2m—1 .
dime Hom,, o ((0%)77(1),1) < dimeC = 1.

We now show that dim Homp, A, (7,1) < 1. We have that

-1
m,m:*

1 -1
wmﬁmMm’mwm’m N Popy = Wiy (Mmm N wmmPgmwm,m) w
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1 5=m

Since o (2m) = 2m, we have that (W' pWmm) . = Dotm)o(i) = DPmo(i) = ,

(2m) (WomPWmm) ., = Pam)ot) = Pmo(i) {0 i tm

for p € Pgm, and therefore w‘ o Pom Wiy C sz Similarly, since o=! (m) = m, we have
wmmPQmw C Py, and therefore W, mPQmw = Py, and we get

Py N HZ™ =y, (PZm O M) wik

Therefore we have

Hom o HE™ (m,1) = Homp,,,Am,,. (7, 1),
by mapping L € Hom, . cm (m,1) t0 LT (Wp,m). Therefore, we get the result

dim(c HomPgmﬂMm,m (77', 1) < 1.
O
3.5.2. An embedding of two homomorphism spaces. In this subsection, we construct an em-

bedding Homp,, ns,,, (7, ¥) < Homp, A, (7,1). We follow [Mat14] Section 4].
We begin with the following lemma.

Lemma 3.43. Let m be a representation of Py, L € Homy,, . (7r me,m,\If) and v € V.
Denote by S : P, ., — C the map

Sp)=Lr(@)v),
and by S : Gy, — C themap S (g) = S ((? 1..)). Then there exists a function & € S (M, (F)),
such that for every g € G, one has S (g) = S (9)&(g). In particular, the integral
w(®)=[ . Sl
|det g[=¢—*

converges absolutely for all k € Z. Moreover ¢, (S) =0 for k < 0.

Proof. Since 7 is smooth, (stabpmm ) N Nym € Ny is an open subgroup of N, ,, and
contains a compact subgroup. Since the projection homomorphism N,, ,,, — M, (F') (defined
by (Im I)fn) — X)) is an open map, we get that that there exists an open compact subgroup
C of M,, (F) such that (" ) stabilizes v.

Let f : M,, (F) — C be the indicator function of C, f = 1yc. For a Haar measure on

M,, (F'), normalized by C, we have for every p € P,

S(p)z/Mm(F)S@ (Im i))f(X)dX.

Taking p = (? ;) and using the fact that L is a homomorphism we get

() =5(g)- / L wrex)ax.

We denote & (g me X))y (tr(gX))dX. £(g) is the Fourier transform of the function
feSM, (X )) and therefore £eS (M, (X)).
Since ¢ is a Schwartz function, it has compact support. Therefore, if X € suppé, |det X| is

bounded as a continuous image of a compact set, and thus if |det X| is large, then & (X) = 0.
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Hence, S (g) = € (9) S (g) vanishes for g with large |det g|, and therefore [ gec,. S(g)dg
|det g|=q~*
vanishes for £ < 0 from some place.
Finally, for k € Z the set {X € M,, (F) | |det X| =¢*} = {g € G, | [detg| =¢7"} is
closed, and therefore its intersection with suppé is compact. Since S (g) = S (g) € (¢), the in-

tegral [ gec, S (g)dgisactually integrated on a compact subset of M, (F)), and therefore
|det g|=q~*
converges absolutely. O

Lemma 3.44. Let S € Ind%;”m (V). Then there ezists ¢ € S (My, X Gy X GLayy, (O)), such
that

- faf w0 ) L) )p)sommian

Proof. Since S is in Ind](\;,fn’fm (U), there exists an open subset K C Gy, such that S (gko) =

S (g), for every kg € K.
The map M, X G, X GLgy, (O) — Ga,, defined by

wrrye () (L) ()

is continuous, and therefore there exists an open subset C' C M,, x G, x GLg,, (O), such
that the image of C' under this map is contained in K. M,, x G,, X GLy,, (O) is an [-
group as a product of such, and therefore we may assume that C'is compact. The function
o (Y, b,k) = 1 (C) " xe (Y,b,v) - |det | ™™ is as requested (Here p is the Haar measure on
M,, X Gy, X GLagy, (O) given by u(A) = me dy me db fGL2m(O) dklxa (Y,b,k)). O

We now introduce a quite long list of notations. Let m be an irreducible representa-
tion of G, and let L € Homy,,,, (7, V). For v € V; we denote L, € Indgm’m (¥) by
L,(9) = L(w(g)v) (Frobenius reciprocity). Let S = L, for some v € V,. The pre-
vious lemma associates (not uniquely) to S a smooth map with compact support ¢ €
S (M, X G, x GLa, (0)).

Let Cy be the compact support of ¢ (Y, b, k) in the variable b € G,, and denote by ¢’ :
M,,, — C the characteristic function of C, ': ¢/ (z) = Ixg,t () (Note that since G,, is open

in M,,, and C’b’1 is open in G,, and compact, we have that C’;l is an open compact subset
of M,,). We denote by ® the map in the variables A, X € M,,, b € G,, and k € GLy,, (O)
defined by

@((A if)k) :/de/degb(Y,b,k)(b’(Z)w(tr(YA—ZX)).

This integral converges absolutely, as the integrand is a smooth function with compact
support in both variables Y, Z.
® can be written as a product of Fourier transforms of two Schwartz functions:

@((A )b()k:) = | o murayay - [ g2 (-2X)dz

M,

It follows at once that as such, ® is smooth and has compact support in the variables
(A, X,b, k) € My, X My, X Gy, X GLg,, (O).
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Lemma 3.45. For S, ¢ and ® as above and a,b € G,,, the integrals

I(S,(I),a,b):/de GLQW(O)dkS((a if) k)cb((“ )b() k;)
J (S, ¢,a,b) :/de /GLM@ dkS ((a Im) (Im };) (Im b) k:) (Y, b k),

both converge absolutely, and are equal. They define a map which is smooth with respect
to the variables a € G,,, b € G,,. The map’s support is contained in a compact subset of
M, x G,,.

Proof. Since the maps X — @ ((¢X),k) and Y — ¢ (Y, b, k) have compact support in the
variables X and Y respectively, the integrals are actually integrated on compact sets. These
integrals converge absolutely, as their corresponding integrands are smooth functions on
compact sets.

We define f : Gy X My X Gy GLay (O) = Chy f (a, X, b, k) = S ((a )b() k) o ((“ )b() k:)

Since S € Indgfn’fm (U), we have

fa, X, b, k) = (tr (Xb71)) S ((“ b) k;) ® ((“ )b() k) .

By substituting the definition of ® we get

/M (@ X k)ax = ((a b> k> /M 6B (i (Ya) Y-
| /Mw (br (X071)) < ¢ (Z)w(tr(—ZX))dZ) dx.

We notice that the integral me ¢ (Z) (tr (—=ZX))dZ is the Fourier transform of ¢’ at the
point — X, and therefore

/ ¢ (tr (X)) ( i qﬁ/(Z)w(tr(—ZX))dZ) aX = / 6 (tr (X)) & (X') dX',

m

which equals the value of the Fourier transform of gg’ at the point —b~!. By Fourier’s inversion
formula we get that

. fla, X, b k)dX = . S ((a b) k) ¢ (b71) ¢ (Y, b, k) b (tr (Ya)) dY.

Since ¢’ is the indicator function of C’b_l, where C}, is the support of ¢ in the variable b, we
have that ¢ (Y,b, k) vanishes whenever ¢’ (b~!) vanishes, and therefore

fla, X, bk)dX = [ ¢(.bk)S ((“ b) k:) ¥ (tr (Ya)) dY.

Mm M,

Finally, using again the fact that S € Ind%n*fm (V) we have

s ((* J8)-=((* ) ( 1) (° o)
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and we get

Mmf(a,X,b,k)dXz/Mmgb(Y,b,k:)S<(a Im> <1m };) <Im b) k) -

Integrating both expressions for me f(a,X,b,k)dX by k on GLa, (O), yields the desired
equality.

We now move to explain why the integrals define a smooth function whose support is
contained in a compact subset of M,, x G,,. Using Proposition with the compact set
suppg and G = Gy, the map (Y, b, k) — (Im };) (Im b) k, the representation Ind%i@”fm (m)

and the vector v = S, we get that there exists a sequence (S;), C Ind%nmm (r) and a

sequence (O%')@']L of smooth functions «; : supp¢ — C, such that

(7 D)= s Foons,

for every (Y, b, k) € suppp. We extend the definition of «; to the set M,, x G,, X GLa,, (O)
by defining it to be zero outside of supp¢. This is still a smooth function, as supp¢ is closed

in the larger set.
We have that

(0 D) D ))-Snonsio

N

J(S,qa,a,b):ZE(a)/ dY/GL (O)dkozi(Y,b,k)gb(Y,b,k).

=1

and therefore

S; is smooth, since Ind%ilmm (¥) is smooth. «; - ¢ is smooth as well in the variable b, and
therefore the integral defines a smooth function.

Finally, :SYZ = :Si - &, where & € S (M,,), and therefore supp:SYi C suppé;, where suppé; is
compact. We get immediately that the support of the function that this integral defines is
contained in Ufil (suppé;) x (supp,¢). This finite union is a compact subset of M, x G,,,. O

Let

C D

Then €2 is an open subset of My, as having rank m is equivalent for having a non-zero minor
of order m. We denote

Qoz{(A 5) |A,BeMm,deGm}.

Using the same elimination algorithm used in the proof of the Iwasawa decomposition, one
gets that the multiplication map 7 : Qy x GLg, (O) — Q, r (p, k) = pk is surjective.
We define a map &, : Q2 — C by

o, (pk) = / O (pk'™", K'k) di,
k' €GL2m (O)NPm,m
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for p € Qo, k € GLa,y, (O). This map is well defined: if pik; = poks then p; = pokoki”.
Writing p1 = (4 5), po = (4 5), kaky' = (4, £,) implies &' - C” = 0, and since d' is
invertible, this implies C” = 0, and therefore kyk;' € P,,,, N GLg,, (O). Translating the

integral in the definition of ®, by kok; ! from the right, we get

P (plk/_l, ]{flk‘l) d/{?, = / P (pgk?//_l, ]{?”/{32) dl{?//.

/k’eGLgm(O)ﬂPm,m k" €GLoam (O)NPm,m

Since ® is smooth with compact support, there exists an open compact subgroup of GLs,, (O),
such that ® is invariant to right multiplication of the variable & under this subgroup. There-
fore the map @, is fixed by right multiplication under a compact open subgroup of GLs,, (O).
Similarly, there exist open compact subgroups Cy4 C M,,, Cx C M,,, Cy C G,,, such that,
for any (#°39) € Qg, A’ € Cu, X' € Cx, d' € Cy and k € GLy,, (0)

A+A4 X'+ X, B Ay Xo
() (0 5))

Choosing the subgroups such that Cy = Cx C M,, (O) implies that @, ((A/J“Ao XUFXO) k) =

d'do
D, ((AO )d((?) k:) Combining these facts, we get that ®, is smooth.

It follows that supp®, is closed. It is clear that supp®, C r (supp®) - GLa,, (O), where
r is again the multiplication map. Since supp® and GLs,, (O) are compact, we get that
7 (supp®) - GLa,, (O) is compact, and therefore supp®, is compact, as a closed subset of this
compact set.

We wish to extend the definition of ®, to a Schwartz function on Ms,,,, in order to be
able to use it for a Godement-Jacquet integral (Theorem in the proof of Proposition
[3.47] Note that supp®.. is open and compact. Therefore, we can extend @, : My, — C to a
Schwartz function on Ms,,, by defining ®, as zero outside of €.

Let U be a compact open subgroup of GLg,, (O), such that ®, is invariant under left
multiplication by U. We define for S (¢) = L (7 (g) v) where v € V,

SY(g) = / S (u™'g) du,
U
vyhere du is a normalized ﬁaar measure of U. SV is a matrix coefficient of 7: the functional
L :Vy — C defined by L (v) = [, L (7 (u"")v)du is smooth, since it is invariant to the

action of U, and therefore SY (g) = <L, 7(9) U> is indeed a matrix coefficient.
For k,l € Z we define

a; (®,5) = g™ I(S,9,a,b)dadb,

|det a|=q—*
|det b|=¢~*

_ _—lm
bk,l (9257 S) =4 [jeta|=q

|det b|=¢~!

J (S, ¢, a,b)dadb.

—k

Note that

{(a, b) € G X Gy, | |detal = g, |det a| = q’l} = {(a, b) € My, X G, | |deta| = g, |det a| = q’l} ,
65



is a closed subset of M,, X G,,. Since the support of I (S, ®,a,b) = J (S, ¢, a,b) (with respect
to the variables a,b) is contained in a compact subset of M,, x G,,, this integral is actually
integrated on a compact set (as an intersection of a closed set and a compact set), and since
the integrand is smooth, the integral converges absolutely.

Furthermore, since the support of I (S, ®,a,b) = J (S, ®, a,b) (with respect of the variables
a, b) is contained in a compact subset of M, X G,,, the image of map (a,b) — (|det al, |det b])
is bounded for a,b in the support, and therefore I (S, ®,a,b) vanishes for a,b € G,, with
large determinant. This implies that a, (®,S) = 0 for k,I < 0. Moreover, since b € G,,,
|det b] is also bounded from below, i.e. ax; (®,S) =0 for I > 0.

We now define

1(S,®,,a,b) :/ dX dkoS ((a )b() ko) D, ((“ ”g) ko),
m GL2m (0)

ap; (S, ®.) = q¢™ I(S,®,,a,b)dadb.

|det a|=¢~*
|det b|=¢ "

Claim 3.46. ap; (S, ®) = ax,; (S, D.).

Proof. One substitutes the definitions of I (S, ®,,a,b) and ®, to the expression

|det a|=¢—* I (57 (I)*7 a, b) dadb.

|det b|=¢ !

Note that for & € GLay, (O) N Py and (@) € Py, one has (@) = (¢ %) K/, where
(¢ X"} € Py Substituting (¢ ) = (¢ %) &’ (in the same notations as in the definitions),
and then substituting ky = kK'~*k” (for the integration with respect to kg € GLa,, (O)) yields
the desired equality. 0

Proposition 3.47. The sum ZjeZ

ZkleZ ar, (S, ®) g *q7!%| converges for Re (s) greater

k+l=j
than a real . depending only on m. In particular the sum

Z Z (g (S, (I)> q—ksq—ls

JEL k€T
k=5

converges for Re(s) > r, for the same r.. The latter sum extends meromorphically to an
element of L (7r, s+ %) Clg®,q77).

Proof. As seen before, ay; (S, ®) = a, (5, @.). For a fixed j the sum

dj (S, (I)) = Z akJ (S, (I)*) qiksqilS
k,l€Z
k+i=j
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is a finite sum, as we have seen that ay, (S, ®) vanishes for k,1 < 0. A simple calculation

shows that
d; (S, ®) = g~ +s) / dadb / dx dkq
[dee(( 5 Jko)[=a77 m Glzm(0)

e (1 3) )2 ((3) ).

To proceed, we use the following expression for the Haar measure on Gs,,:

1 a X
fgdg:/ da/ db/ ax dk—mf(< >k>
Gom () Gm  Jawm I, GLon(©)  |detal b))

Therefore
4, (5, ) = / S(g) ®. (g) |det g™ dg.
|det g|=q¢~?

Since @, is invariant under left translations of U, we have
L0 = [5G (g) ety dy
|det g|=¢~7

hence
G0l [ 8] o (9)] derg™ ™ dg
|det g|=¢™7

Summing on j yields

Z Z Qg (S’ (I)) q*ksq—ls < / |SU ‘ ’(I) |detg|m+Re(s dg

JE€Z | Kkl Gam
k=5
The integral [,, SV (g) ®. (g) - |det g™ " dg is a local zeta integral of Godement and Jacquet,
and therefore by Theorem , it converges absolutely for Re(s) > r,, where r; is a real
number depending on 7 only, to an element of L (7r, s+ %) C|[q®, q~°]. Finally, since the series
converges for Re (s) > ., we get

SN S @)t = [ 8 (g) @, (g) fdet g dy,
JeZ kleZ Gam
kH=j
and therefore the sum >_;, >° ari (5, P) ¢ "¢7" has a meromorphic continuation to
k=]
an element of L (m,s+ 3) Cl¢®, ¢7°). O

Proposition 3.48. The sum I (S,s) =) ., ck ( ) g% converges absolutely for Re (s) > 7.
It equals to the sum Zjez Zklgz a (S, ®) g Fegts.

Proof. We write for a fixed [ € Z, ", 5 by (5,0) ¢ = Y4 cp s (S, ¢) ¢~ #7D%. We have

seen that by, (S,¢) = 0, for I > 0 and | < 0 unlformly, with respect to k. A simple
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calculation shows

DD bia(Sio) g g = <Z b (S, ¢)> -

l€eZ keZ keZ \I€Z

Substituting the definitions of by_;; (S, ¢) and J (S, ¢, a, b) and substituting (in the notations
of the definitions) a = a’b™", |detd’| = g%, we get that the sum Y, ., bp_1; (S, ¢) equals

1p—1
/ db/ da’/ dY/ dkoS ((“b ; ) (Im IY> (Im b) ko) 6 (Y, b, ko) |det b|™ .
Gm |det a’|=g—* m GL2m (0) m m

Recalling that ¢ was chosen by Lemma [3.44] we get that >, b1 (S,¢) = & (S) (See

Lemma |3.43)).

Since ay; (S, @) = bg, (S, ¢), we have
o (8) g = Z b1 (S, 0) ¢~ = Z arg (S,0) g g™,

I€Z. LVET
I+U=k

The proposition now follows from Proposition [3.47] O

Corollary 3.49. The series I (S,s) =Y ez ¢k (S)q™" has a meromorphic continuation to
an element of L (7r, s+ %) Clq®, q7°], which we continue to denote I (S, s).

Proposition 3.50. Let 7 be an irreducible representation of Gay,. Let L € Homp, g, (m, V),
veVy, seC. Then for L,(g) = L(7w(g)v) and p € Pay, N\ My, 1, 0ne has

1 (Lw(p)m S) =X (p)s - (Lw S) ;
where X @ Poyy MMy, 1y — C* is defined as x ((%° py)) = ’det (po . ggl)L forpo € P, go € G,.
Proof. One writes the definition of ¢, (L,,(p)v)7 for p = (%, ), where go € G, po € Py- By
conjugating with (? ,,) € S, N Py, and substituting g = pog’gy " |det g| = |det g'| - g~
where ‘det (pogo’l)‘ = g %, one gets
Ck, (Lw(p)v) = Ck—kq (LU> .
Therefore for s € C with Re (s) > r,

Dk (Lng) a7 = a7 Y e (L) g7,

kEZ kEZ

as requested. By the uniqueness of the meromorphic continuation, this equality remains
valid for the meromorphic continuation of I (L, s). O

Proposition 3.51. Let m be an irreducible supercuspidal representation of Ga,,. The vector
space Homp, g, (7, V) embeds as a subspace of Homp, ., (7,1).

Proof. As seen in Corollary [3.49] the series I (S, s) extends meromorphically to an element
of L (7?, s+ %) C|q®,q~°]. Since 7 is supercuspidal, L (7, s) = 1 (Theorem , and therefore
I(S,s) is defined for every s € C. Given L € Homp, nsg,,, (7, V) we define A (L) by

A(L) (v) = I (Ly,0) (veV,).

We have shown that for p € P, N M,,,,, we have [ (Lﬂ(p)v,s) = x(p)° - I(L,,s), and

therefore A (L) (7 (p)v) = A(L) (v), i.e. A(L) € Homp, nn,,,, (7,1). A is a linear map,
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since it is clear from the definition of 7 (S, s) that for a fixed s € C with Re(s) > r,, we have
that I (-, s) is linear.

We claim that A is injective. To show that we show that given L # 0, there exists a vector
v € Vg, such that A (L) (v) # 0.

Let L # 0 and let vy € Vy, such that L (vy) # 0. By multiplying by a scalar, we may
assume L (vg) = 1. Given a Schwartz function n € S (M,,,), we define the vector

vomz/mn(X)W((Im ;fn»vgdx.

(since 7 is smooth, the integrand is a smooth function of X).
A simple computation shows

(1)) Loooomas(-((* 1))

-~

7(g)

Since 7 is smooth, there exists an open compact subgroup of GG,,,, which we denote K,, C G,,,
such that 7 ((* ; ))vo = v, for every k € K,,. Since G,,, C M,, is open, K,, C M, is
open and compact. Furthermore, we may assume that K,, C GL,, (O). Therefore we
have that the indicator function 1XKWO € §(M,,) is a Schwartz function on M,,. Since the
Fourier transform is a bijection from S (M,,) to itself, there exists n € S (M,,) such that

0= mlxmo. Choosing this 7 yields L ((? 1, ) vo,,) = L (vo) - 1xx,, (9), and therefore
m Yo

for s > r, we have

I (Ly,,s) = L (vg) dg = 1.

vQ -1

Therefore we have shown that for every L # 0, there exists a vector v = vy,, such that
I(L,,s) = 1, and therefore the meromorphic continuation I (L,,s) satisfies A (L) (v) =
I(L,,0)=1%#0. O
Corollary 3.52. Let w be an irreducible supercuspidal representation of Gop,. Then

dim Homp, g, (7, V) <1

Proof. Combine Theorem [3.37 and Proposition [3.51] O

3.5.3. Proof of the functional equation. We move to the proof of the functional equation

(Theorem |3.36]).

Proof. We recall that for a fixed s € C, the forms J; 4, jw,w are ]det\_% - equivariant bilinear

maps over S, and therefore define elements in Homg, <7r ® S (F™), |det| "2 - \I/> We show

that the dimension of Homg, <7r ® S (F™),|det| 2 - \I’> is at most 1, for all values of ¢*,
except for a finite number of values.
We first show that Homg, <7T ® S (F™),|det| 2 - \If> is embedded as a subspace of

Homyg,, <7T ® Sy (F™), |det| 2 - \IJ), for all values of ¢~*, except for a finite number of values.
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Here
So (F™)={feS(F™)| f(0)=0}.

Note that Sy (F™) is an invariant subspace of S (F™) as the kernel of the homomorphism
f+— f(0). We show that the restriction map

(3.13) Homs,,, (7S (F™),|det| # - W) —~Homs,, (7@ S (F"), |det|"? - w)
b '—>b [ﬂ@SO(F"L)7

is injective. Suppose b # 0 is a bilinear |det]_§ - equivariant map, such that its restriction
to Vi x Sp (F) is the zero map.
We define a bilinear map b : V, x SU™) /g pmy — C by
b(v.f+So(F™) =b(v.f).

One easily checks that this map is well defined, as b is identically zero on V, x Sy (F™), and

that this map is also |det| "2 - U-equivariant over So,.
On the other hand, S™) /g, (pm) = C with the trivial representation and therefore we have

b(m(g9)v,p(g) (f +So (F™)) =b(m(g)v, f+So(F™)).

Choosing g in the center of G, i.e. g = A, € Sy, we have m (A\[,,) v = w; () - v where w; is
the central character of m. Therefore we get
b(m (o) v, p (o) f+ 8o (F™)) = [A7™ b (v, f + So (F™)),
and on the other hand
b (1 (Mam) v, p (Mam) f+So (F™)) = we (A) - b (v, f + Sy (F™)).

Choosing values of v, f, such that b (v, f) # 0, and therefore b(v, f+S, (F™)) # 0, yields

wr (A) = [A[T™.
Substituting A = w yields w, (@) = ¢™*. Since w, depends on 7 only, this equality can be
1 e
true only for at most m values of ¢~° (¢° = w, (w)™ eka, k € {0,...,m —1}). Therefore,

we have shown that except for a finite number of values of ¢°, the restriction map defined in
(3-13) is injective.
We consider the right action of S5, on row vectors F™ defined by

(al,...,am)-(g z):(al,...,am)g.

This action has exactly two orbits: {0} and F™ \ {0}. The stabilizer of the element ¢ =
(0,...,0,1) € F™ consists of elements of the form (Y 3) with g € P, i.e.

stabg, . (€) = Som N Py,

We have the following homeomorphism g, ~p,, \**" = F™\{0}. Since Sp (F™) = S (F™ \ {0}),
we get using these identifications that

So(F™) =S (ngmPgm\Sm) = indgi:impzm (1),
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and therefore we have the following isomorphisms:
Homg, . <7r © So (F™), |det| % - \1/) >~ Homg, <7r ©indZm L (1), |det| - \p)
= HomSZ'm ((’det‘% ’ \I]il> d ® indgs:szb'm <1) ? 1)
,_\_/
> toms,, (((detls - 00) -7 inaSep, (1)
= Homs,,, ((Idetl? - ) -7 nd5rp, (5, v ) )
1 n 1
Here 6, . s (p) = 52(;;#2(;”‘)@ = |det p|2, for p € Sy, N Py, and we get
Homyg,, <<|det|% -\I/_1> -W,Indgzzmpm <|det|%>> = Homg,, np,, <<|det|% -\I/_1> -, |det]%>

= Homg, np,, (\det|% T, \Il>

By Corollary 3.52, Homsg,, p,, (|det]% , \If> has dimension at most one, which implies

that so does Homg, <7r ® Sy (F™), |det| 2 - lP) Since Homg,, (7r ® S (F™), |det| 2 - \If>

is embedded as a subspace of Homg, <7r ® So (F™), |det| 2 - \If) for all values of ¢~* except
for a finite number of values, we get that for all values of ¢7%, except for a finite number,
Homyg,, <7r ® S (F™), |det| "2 - \I/) has dimension at most 1.

Recall that for a fixed value s € C, By (W, ¢) = Jr.y (5, W, ¢) and B, (W, ¢) = Jyr.y (5, W, ¢)
are bilinear |det|™? - W-equivariant forms (Corollary , and therefore define elements of
Homyg,, <7T ® S (F™),|det| 2 \If) Therefore, for every value of ¢~*, except for a finite

number of values, B, = 7. (s) By where 74 (s) € C. Choosing W € W (,¢) and ¢ €
S (F™), such that J, (s, W, ¢) = 1 for every s, implies v, (s) = ~7m/) (s, W, ¢), for every
value of ¢~°, except for a finite number of values, which implies that v, (s) is a rational
function in the variable ¢~°. For fixed W € W (m,v¢) and ¢ € S (F™), both sides of the
equation Jry (5,W,0) = Yry (5) Jew (5, W, $) are rational functions in the variable ¢~*.
Since both sides agree for all but a finite number of values of ¢7%, we get from the uniqueness

theorem that they agree for all values of ¢—*.
— 8.7 2
L(Ll(s+/;2) where e, (s) € C(¢™*). We will show

€4 (s) is an invertible element of C [¢°, ¢~°]. We have the following equation:

Jﬂ',lli (87 W7 ¢) —¢ (S) Jﬂ',ll) (37 VV, ¢)
L(1—s7 A2 ™Y L(s,m A2) "

Since L (s, 7, A2) is the generator of the fractional ideal I, 5, there exists (W;)X, € W (m, 1),
(¢i), € S (F™), such that Zf\il Jrw (8, Wi, &;) = L (s, 7, A?). Substituting this in the equa-

tion yields e, 4 (s) = Zfil %, which implies that e, , is an element of C|[¢°, ¢™*].

Likewise, one can choose (I/Vi’)f.\[:/1 CW (m, ), ((b;)f\:l C S (F™), such that Zf\il Jew (5, W/, §) =

~ . . .. . . _ 1 Jr Wb, .
L(1—s,7,A?%). Substituting this in the equation yields gﬂip (s) = Efil %, which
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Finally, we write v, (S) = €xy (5) -




implies 5;’2) (s) € Clg®,q7°]. Therefore e,y (s) is an invertible element of C g%, ¢™°|, as
requested. O

Remark 3.53. The calculations done in Subsection yield that for a € F*,

2(m—1 2m(m—1 s—l
Yaapa (5) = wy (@)X D a2 =00=2) (s

m— m(m—1)(s—%
(a)Z( 1) \a]Q ( 1)( 2)57“/) (3)

3.6. Poles of the ~-factor, and Shalika functionals. Let 7 be an irreducible supercusp-
idal representation of GLa,, (F'). In this subsection we relate between a pole of the y-factor
of m and the existence of a Shalika functional. We begin with the following propositions
which will be useful later.

Lemma 3.54. Suppose that J, 4 (s,W, ¢) has a pole at s = 0 for some W € W (m,v¢) and
€ S(F™). Then w, = 1.

Proof. Since m is supercuspidal, by Remark [3.33] - Jmp s, W,¢) € L(ms,w,) - Clg*, ¢°].
Since Jmﬁ (s,W,¢) has a pole, this implies that w, is unramlﬁed and then L (ms,w,) =
W' Since Jy 4 (s, W, ¢) has a pole at s = 0, this implies w,,( ) = 1, and therefore
wy = 1. ]

Definition 3.55. Suppose that w, = 1. We denote

b () = /ZN\G (/B\M v (wm,m <]m ;i) (9 9)) v (=t (X)) dX) -

This integral converges due to Proposition [3.28]
Proposition 3.56. Suppose that w, = 1. Then for any W € W (m,v) and ¢ € S (F™)
lig (1= ¢) Jy (5, Wi ) = 6(0) - Lrs (V)

Proof. We first consider two special cases.
If ¢ (0) = 0, then by Remark [3.33) J; 4 (s, W, ¢) € C[q~*, ¢°], and therefore

lim (1= g™) Jy (s, W, 6) = 0.

L.e. exy, (8) = wr

If ¢ = 1xom, we have that J, (s, W, ¢) is equal to

/Am_ld“' /K dk /B W (5? ()W <wm,m (]’" fn ) (“/k ak)) w(—trX)> det (a')]°

. / Ixom (€amk) wr (am) |am|™ dan,.
F* ——

=1
Since eak € O" <= |an| <1, we get that

o0

ms ms 1

i=0 wt(O*

Therefore, we get that the limit lim,_,0 (1 — ¢~"™°) Jry (s, W, ¢) is equal to

/A Mda' /K dk /B » dx (5; (@)W (wmm (Im })i ) (“/k" ak)) ¢(—trX)>.
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(Note that this value is finite by Proposition [3.28)).

By the Iwasawa decomposition, this equals [, (W).

We move to the general case. Let ¢ € S(F™). Write ¢ = ¢/ + ¢(0) - 1xom, where
¢ € S(F™) with ¢/ (0) = 0. Then

Jrw (8, W, 0) = Jry (5, W, &) + ¢ (0) Jry (5, W, Ixom) ,
and from the previous two cases:

i (1= ¢ ™) Jry (5,W,0) = 0+ 6 (0) Ly (V).

s—0

O

Corollary 3.57. Let W € W (m,¢) and ¢ € S (F™). Then Jry (s,W, ¢) has a pole at s =0
if and only if w, =1 and ¢ (0) Lz, (W) # 0.

Proof. First note that lim,_.q 1_q‘ims = ml})gq # 0 and therefore J; (s, W, ¢) has a pole at
s = 0 if and only if lim, o (1 — ¢ ™) Jrp (s, W, 9) # 0. The corollary now follows from
Lemma [3.54] and Proposition [3.56 O

Corollary 3.58. L (s,m,A?) has a pole at s = 0 if and only if w, = 1 and there erists
W e W (r, ), such that L., (W) # 0.

Proof. L (s,m,A?) has a pole at s = 0 if and only if one of the functions J,, (s, W, ¢) has a
pole at s = 0. The corollary now follows from the previous corollary. 0

Theorem 3.59. 7., (s) has a pole at s = 1 if and only if w, = 1 and there exists W €
W (m,4), such that I, (W) # 0.

Proof. Suppose that 7, (s) has a pole at s = 1. According to Theorem there exists
W e W(n,¢) and ¢ € S(F™), such that J., (s,W,¢) = 1. We substitute such W and

¢ in the functional equation to get Vx4 (s) = Jry (s, W, ¢). Recalling the definition of

Tos (W, ) = Ji g (1 s W, ¢3) where W’ € W (7,41) is defined by

vo=e((s, ")) =w (o, )

We get that Jz g <s, w’, (/5) has a pole at s = 0. According to Proposition [3.56| this implies
that wz = 1 and ¢ (0) Iz »—1 (W') # 0, which implies that

R AR (AT CSONC A O TS et P

Using the fact that ws,, and w,,,, commute, and the same conjugation techniques as in
Subsection we get that Iz -1 (W') = I, (W), and this direction is proved.

For the other direction, suppose that w; = 1, and that there exists W € W (mr, ), such
that [, (W) # 0. Again, we get that 0 # Iz y—1 (W') = I (W), where W’ is defined as
above. Since I, C L (ms,w,) Clq™*,¢°], we have L (s, 7, A?) = m, L (s, A% = m(;,s),
where py (2),p2 (2) € C|z] are such that p; (0) = p2 (0) =1, p1 (2),p2(2) | 1 — 2™, and such
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that 1 — 2 | p1 (2),p2 (2) (as L (s,m, A?), L(s, 7, A?) have poles at s = 0 from the previous
corollary) and therefore

p1(q°)
wab (8) = €Epap (8)  ————,
Y ﬂﬂ( ) ﬂb( ) D ((]7(175))
where e, (s) =c-¢*, c€ C* k€ Z.
Since p; (¢71) # 0 and py (1) = 0, it is clear that v, , has a pole at s = 1. O

Definition 3.60. A functional [ : W (m, 1) — C is called a Shalika functional if for every
W eW (m,¢) and (9% ) € Sy, one has L (7 (95 )W) = (tr (g7 X)) L(W).

Proposition 3.61. Suppose that w, =1, then the functional I, defined above is a Shalika
functional.

Proof. This follows directly by changing variables in the integral defining [, ,, just as in the
proof of the equivariance properties of J, , (Proposition [1.10)). O

We conclude this subsection with a theorem.

Theorem 3.62. Let m be an irreducible supercuspidal representation of GLla, (F)). The
following are equivalent:

(1) wy=1and l;, #0.

(2) Y (8) has a pole at s = 1.

(3) L{(s,m A?%) has a pole at s = 0.

3.7. The local exterior square L function for supercuspidal representations. Let

7 be an irreducible supercuspidal representation of GLs,, (F'). In this subsection, we give an
explicit expression for L (s,m, A?) (See Remark for the definition).

Proposition 3.63. Suppose that w, is ramified, i.e. wy [0<Z 1. Then L (s,m, A?) = 1.

Proof. The inclusion I, O Clg~*, ¢°] is always true (Theorem [3.31]).

Regarding the inclusion I , C C[¢™*, ¢°], from Remark we have I , € L (ms,w,) Clg*, ¢°|.
Since w, is unramified, it follows from Theorem [3.3|that L (ms,w,) = 1, and the proposition
follows. U

. Then
1
L(S,’ZT,/\Z): H W,

keSﬁ,w

Proposition 3.64. Suppose that w, =1. Let ( =e

where

Sﬂvwz{ogkgm—HHWEW(mw,

Lo (i (™ 2 (7)) e ax ) jaeg it g )

Proof. Since J; (3 + 2mikyys qb) =J (s, W, ), we get from Proposition [3.57]

mlogq’ #
ﬂ-ldet‘ SRR

mlogq’

such that [ wi._ (W) # 0. This is equivalent to k € Sy 4.

-|det| ™ 1o d

that J; (3 + 2k yy (b) has a pole at s = 0, if and only if there exists W € W (m, 1),
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Since L (s,m,A?) = ﬁ, where p(2) | (1 —2™) (since I, C L(ms,w;)Clg*, ¢°]), we

get that p(z) = ersw (1 — ¢*2), as required. O

We now move to the case where w, is an unramified character. Suppose that w, is a
general unramified character. For z € F* write 2 = w” - u, where |u| = 1, k € Z. Then,

wr (2) = wy (w)". Therefore, we can write wy (z) = |2|*, where sy = %. Consider the

representation n’ = 7 - \det|725791. 7' is irreducible and supercuspidal with a trivial central
character. Therefore, from Proposition [3.64]

/

1
L(S,W/,/\Q) = H W

kES,rfyw

As in the proof of Theorem , Jorw (542, W,0) = Jry (s, W, $), and therefore it follows
that L (s + 2,7/, A%) = L (s, m, A?). Therefore

L (S,ﬂ', /\2) = H

T )
keSy, L — Wr (@)™ CFq—*

1

where

Swz{ogkgm—lHWeW(?T,@/)%

I, X\ (g 2rik—log o ()
(L on (7 ) ) myoe) ™

Theorem 3.65. Let m be an irreducible supercuspidal representation of GLay, (F). If wy is
ramified, then L (s,m,A?) = L (ms,w,;) = 1. If wy is unramified then

L(S,?T,/\Q) = H L

T )
keSy, L — Wr (@)™ CFq—*

where
swz{ogkgm—lHWeW(?T,@D%

(/ W(wm’m (Im I ) (g ))w<—tr<x>>dX) [det g~ wE dg £ 0},
ZN\G B\IVI m g
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4. LEVEL ZERO REPRESENTATIONS

Towards this section, F' is again a p-adic field with absolute value |-|, O denotes the ring
of integers of F', P denotes the unique prime ideal of O, w is a uniformizer of O (a generator
of P), q = }O/p’. Then ©/p 2T,

We denote by v the quotient map v : O — F,. v defines a homomorphism v : GL,, (O) —
GL, (F,).

4.1. Preliminaries.

4.1.1. Lewvel zero representations. Let n be a positive integer.

Let (mo, Vo) be an irreducible cuspidal representation of GL,, (F,). We describe a method
to construct an irreducible supercuspidal representation (7, V') of GL,, (F).

Using v and 7y, we can define a representation (m(, V) of GL,, (O) by mj, (k) = 7o (v (k)),
for k € GL, (O).

Let x : F* — C* be a character of F"*, such that x [p+= wx, oV [0+, Where wy, is the
central character of mg. Such characters exist: using the decomposition F* = (w) x O*, one
sees that such characters are exactly the characters of the form x., (@" - u) = 2§ - wx, (v (),
where 2o € C* (u € O*, k € Z).

We define a representation (xm, Vo) of F* - GL, (O) by (x7mp) (z- k) = x (2) - mo (v (k)),
where z € F* and k € GL,, (O). Tt is easy to check that x7 is well defined. Since GL,, (O) is
an open subgroup, it follows that F*-GL,, (O) is an open subgroup, and therefore F*-GL,, (O)
is also a closed subgroup.

We define (7, V) = indgfféfz(o) (x75)-

Theorem 4.1. (m,V) is an irreducible supercuspidal representation of GL, (F). [PROS8,
Theorem 6.2]

Representations obtained through this method are called irreducible level zero (or depth
zero) supercuspidal representations of GL,, (F).

4.1.2. Whittaker model lift. Let (m, Vi) be an irreducible cuspidal representation of GL,, (F,),
and let (m,V) be a level zero representation, constructed through my, with respect to the
character x : F* — C*. In this subsection, we relate between the Whittaker models of 7 and
70-

Let ¢) : FF — C* be a non-trivial character, such that its conductor is P (i.e. ¢ [p= 1
and ¢ [p# 1). We denote by 1) : F, — C* the character defined by v (z9) = ¢ (x), where
zo € F, and z € O with v () = xo. 1) is well defined, as ¢ [p= 1, and 1)y is non-trivial, as
Vo 1.

As noted in Subsection [I.1.1] 7, is generic.

Let 0 # Ty € Homy,(r,) (7r0 [Nn(]pq),wo) be a non-zero Whittaker functional of my with
respect to .

We give a description of the Whittaker model W () using Tj.

We start with a useful Lemma:

Lemma 4.2. N, N (F*-GL, (0O)) = N, (O), where N,, C GL,, (F) is the upper triangular
unipotent matriz subgroup and N, (O) = N, N GL, (O).
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Proof. For the inclusion N,,N(F* - GL, (O)) C N,, (O), suppose that u = z-k, where u € N,
z € F* and k € GL,, (O). Taking the determinant of both sides yields |z|" = 1, and therefore
|z| = 1, which implies z € O*. Therefore v € GL,, (O) N N,, = N,, (0).

The other inclusion is trivial. U
Theorem 4.3. The functional T : V — C defined by
Ea= [ ) @S ) (feV)
(O) n

is a non-zero Whittaker functional T € Hompy, (7 [N, ,1).

Proof The integrand is Well defined: for k € N,, (O), f (ku) = m (v (k)) f (u), and therefore
= (k) (To, f (ku)) = =" (ku) o (v () (To, f (u).
——

¥(k)

The integral converges: since f € 1nd§fEL)(O) (xmo), there exists a compact subset C' C
GL,, (F), such that suppf C (F* - GL, (O))-C. Therefore the integral is integrated on cosets
of the form N, (O)u, where u € N, N (F*-GL, (O)-C). Suppose that u = zkc, where
ue N, (F), 2€ F*, ke GL,(0) and c € C. Then zI, =uc 'kt € N,,-C~'-GL, (0). By
comparing determinants we get that 2" € det (C!) - O, and therefore |z|" € |det (C71)).
C~! is compact, and therefore |z| is bounded, i.e. z belongs to a compact set C; C F*, and
u € Cz-GL, (O) - C belongs to a compact set. Therefore, the integral is integrated on a
compact subset of y, )\, and therefore converges.

It is clear by its definition that 7" € Homy, (7 [, ,%). We show it is not identically zero.

Let vy € Vj such that (T, vp) # 0. We define f,, € V by

Fuo (g) = {X(Z>7ro(v(k))vo g =2k, 2 € F* k€ GL,(0)

0 otherwise

then f,, € mdg}’éL ) (X 7). We have

<T» fvo> - / ¢_1 (U,) <T07 fvo (u>> duv
(O)\N"
and u is integrated only on cosets of the form N, N (F*-GL, (O)) = N,, (O). This implies
that the value of the integral equals (Ty, fo, (1)) = (To, vo) # 0. O

We now express the Whittaker model W (7, ¢) using Frobenius reciprocity: for f € V we
denote by Wy : GL,, (F') — C the function Wy (¢) = (I, (g) f). Then

W (m, ) ={Wy [ feV}.

We also denote for vy € Vi the function W2 : GL, (F,) — C, defined by W7 (g) =
(Th, ™o (9) vo). Then

W (mo,v0) = {Wy, | vo € Vo} .
We will be interested in elements of the form Wy for f = f,,, for vy € Vj, as above:

fu (g) = {X(Z>7ro(v(k))vo g=zk, z€F" keGL, (0)

0 otherwise
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It is clear that f,, € 1nd§f’éL ) (X 7). We denote Wy, = Wy,

Proposition 4.4. suppW,, C N,, - F* - GL, (O). For ug € N, z € F*, k € GL, (O) we
have

Wi (uozk) = 9 (uo) x (2) W, (v (K)) -
Proof. We write

W)= [ 0 B S )
(O\°"

Suppose that g € suppW,,. Then uyg € suppf,, = F* - GL,, (O), for some uy € N,. It is
now clear that g € N,, - F* - GL,, (O).
Let z € F* and k € GL, (O). Then

Wy () = x(2) [ T Ty k)

Suppose that v € N,, such that uk € suppf,, = F'*-GL,, (O). Thenu € (F* - GL,, (O))NN,, =
N,, (O). Therefore the integral is integrated on the single coset I,,, and results with the value
Wy (2k) = x (2) STO’ 7o (v (k)) UOZ'

W, (v(k)

Since W,, € W (1), we have W, (ugzk) = 1 (ug) Wy, (zk), and we get the required result.
U

4.1.3. Lifted Schwartz functions. We will be interested in Schwartz functions obtained in the
following fashion: Let ¢ be a function ¢ : F;" — C. We define a function on F™, denoted by
F¢ by

It is clear that F} is a Schwartz function which is invariant to translations of P™.
Fix a non-trivial character " : F — C* whose conductor is P.

Proposition 4.5. Let 77; be the Fourier transform of F, with respect to ¥, defined as
Fy(y) = [ Fo (2) ¥ ({x,y)) dz. Then

Fy(y) = F;(y),
where Cb( ) = }n a€Fm ¢ (a) @ZJ({: (<a’ :L‘>)

Proof. We begin with some properties of the Fourier transform: for a Schwartz function
f:F™ = Candae F™ be F* we denote f,, (x) = f(a+bx). A direct computation

shows that
J?a\,b( ) = |b|m¢f << Z’ >>f(%>
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Next we compute the Fourier transform of 1xyom:
Ixon (y) = [ 47 ((z,y)) dx.
om
For y € O™ — P™, the character x — 97 ({x,%)) is non-trivial (since the conductor of 9

is P), and therefore 1xo (y) = 0 for such y. For y € P™, the character = — 7 ((z,y)) is

trivial, and therefore 1xeo (y) = 1 for such y. Therefore we have @n (y) = 1xpm ().
Finally, let ¢ : Ff* — C. Then Fy = ) pm IXaypm - ¢ (a) where for every a € Fy',

a’ € O™ is an element, such that v (a’) = a. A direct computation shows that

IXar4pm = (1X@m)7£’,i :

w’'w

Therefore

Fy=> ¢(a)-(1xom)_«

1
™ w
acFy

Applying the above properties of the Fourier transform, we get

=Y ¢(a) i T ((d,9)) Ixpm (wy).

aEFm

Since || = ¢ and 1xpn (wy) = 1X0m (y), we get that

Zszﬁ )7 ((d',9)) xom (y)

aGFm

For y ¢ O™, we have that ﬁ’;( ) = 0. Suppose y € O™, then since 7 [p= 1, we have

T ((a,y)) = T ({a,v (y))), and therefore F, (y) = ¢ (v (y)). We conclude that F, = Fy,

as required. O

4.2. The Jacquet Shalika integral of a level zero supercuspidal representation. Let
m be a positive integer. Let (7, V) be an irreducible cuspidal representation of GLy,, (F,),
and let (m,V') be a level zero representation, constructed through my, with respect to the
central character x : F'* — C. In this subsection, we relate between the integrals J;, ,, and
-

Remark 4.6. Suppose that 7’ is the level zero representation, constructed through mo, with
respect to the central character x’, which is obtained by defining ' (@) = 1. Let sq € C,

such that y (w) = ¢~*. Then 7 =7’ - ]det|%, and for every s e C,v e Vy, o €S (]Fg”), we
have

thw(S,LvL,EQJ ZIJ%Qw <S-+-%%,LL%,P%>,
‘Zﬂw(57vvb7ﬁg):: j;ﬁw <S_+'%%7LL;7FE>7
i.e. the choice of x (w) only affects J; ., jmz, (and therefore also Yxy, Exyp, L (s,m,A?),

L(1—s,7,A?) by a translation by 2
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Proposition 4.7. There exists a choice of the Haar measures Hoispy\Mm(F) 5
such that for any ¢ : Fy' — C and v € Vo, one has

Nm(F)\GLm(F)y

0) x (@) ¢
T (8, Wa, F) = gy (W7 Ix wo, 1) . &4 :
,¢(57 ) ¢>) oﬂl}o( v?¢)+ oﬂl}o( v ) 1—x(w)-q*m5
Proof. Using the same steps as in the proof of Theorem [3.23] we have

(4.1)

Trw (5, Wy, Fy) :/Aml da//de;/dX (5];1 (d) W, (wmm ([m [)i) (“lk ak))) Idet (a')]° -

: / Fy (eamk) |am|™ wr (am,) dan,.
F*

We will show that o’ is integrated on (O*)™ ', and that X is integrated on N~ N M,, (O).
Then we will be able to use Proposition
Continuing, following the steps of Theorem [3.23] we get that

T (8, Wy, Fy) :/A da'/de:/ i dzZ (552 (a") 4 (bnzb_l) W, (btzkzwm’m (k k))) |det (a')]”

: / Fy (gamk) |am|™ wx (am) dan,,

where Z = a/7'Xd/, b = diag (a’l,a’l,aé,aé,...,a;nfl,a’mfl,l,l), Uy = (I’” ]i) and uy =
nztzkz is an Iwasawa decomposition of uz as in Proposition [3.22

Suppose that btzkzw,y, ., (¥, ) € suppW,, then by Proposition [1.4 btzkzw.,. (*,) €
Nop - F* - Ky, (where Ny, C GL,, (F) is the upper triangular unipotent matrix subgroup
and Ky, = GLa, (0)), and therefore bt ; = u (Alo,) k, where u € Noy,, A € F* and k € Ko,
The equality u='btz (A" I5,,) = k implies that k is an upper triangular matrix, and therefore
all of its diagonal elements are of absolute value one. Since the last diagonal element of
both b and tz equals 1, this implies that |A\|] = 1. Therefore the diagonal of u (\ls,) k
consists of elements having absolute value one, and thus so does the diagonal of bt ;. Writing
t = dlag (t17t27 .. .tgm_l, 1), we get that |(l; . tQZ'_l| =1 and |CL; . tQZ| =1for1l S ) S m—1
and |t2i—1| = 1. Therefore |t2z’ = ‘tQZ‘_1| for 1 S ) S m — 1. By Theorem , |t22| S 1 and
|to;—1] > 1, and therefore we get that |t;] = 1, for every 1 <i < 2m — 1, which implies that
la;| = 1, for every 1 < i < 2m — 1. By Proposition [3.21 we have HZHﬁ < ngiggrg lti] =1,

and therefore Z € M,, (O). This implies that X = a'Za'~! € M,, (O). Z
We therefore have that a' is integrated on (O*)™ ', and that X is integrated on N~ (0),
where (O*)™! is realized with the diagonal matrices consisting of elements from O*, and

m—1

N7 (O) is the lower triangular nilpotent matrix subgroup of M,, (O). Since a’ € (O*)" ",
65" (a') = 1. Replacing k = a/~1k" in (4.1) yields

/
qup (S, Wv; F¢) I/ da’/ dk'// dX <WU (wm,m (Im “;{) (k k/>)) :
(o)™t K N—(0) m

) / Fy (mm (a”lk’)) lam|™ X (am) da,.
F*
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Note that since a'~! € A,,_, its last row equals €, and therefore ca,,a’ 'k’ = ca,,k, and we
are left with the following integral:

/
Jﬂ',d) (S7 W’U; F(j)) :/ dk// dX (WU (wm7m (Im }X) (k k/))) :
K N—(0) m
: / Fy (gamk’) |am|™ x (am) dan,.

We consider the following integral for a fixed k' € GL,, (O)

o0

/ Fy (gamk) am|™ x (am) day, = Z X (@)’ q_ims/ Fy (e’ amk’) X (am) da,.

1=—00

For i < 0, ew'a,k' ¢ O™ for any a,, € O*, and therefore F, (cw'a,,k’) = 0. For i > 1,
ew'a,k' € P™, and therefore Fj (ew'a,k') = ¢ (0) and

Z x (@) g~ /* Fy (ew'amk’) x (am) da,, = Q;(E);(E:))qq_rzs /* X (@) dar,.

Regarding ¢ = 0: the function Fy (¢a,,k") x (am,) of the variable a,, is constant on cosets of
1+ @O, and therefore

/* Fy (eank) x (ay,) day, = / Fy (eak’) x (a) da

(1+m0)\9"

Since (110)\7 = F; by v we get

) Way (@) -

/ Fy (eank") x (ar,) day, =

aeF*

Therefore, we are left with the integral

o (5, Wy, Fy) /dk’/ dX( (wmm(]m i) (k k)))

¢ (0) x (w)-¢7™
o(ea-v (k') wn (a)+ = x (@) /(Q*X(am)dam

acky

Since W, [GLQM(O W2 o v, the integrand is constant in the variable &' on cosets of

(It (@) \OU(©@), and is constant in the variable X on cosets of ,y—(0)\V (@), and there-
fore

!
S (S,an ¢) :/ dk// AdXx (W'u (wm,m (Im ?() (k; k/))) ‘
(1t (0) \ T () wN~ (O)\N7 (©) m

6 (0) x (=) -
Der (o) + FEEEL | (0,

aGF*
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Since we have the following isomorphisms (by the map v):
(1m+me(0))\GLm(O) = GL, (Fy) ,
o\ 2N (EF,),
we get

Jro o W £) =g 1( q>|w—1< Rl o Z (WS (wm”"(lm }),i) (k k)))

k' €GLy, (Fy) XEN—

¢0)x (@) -¢™
(,UTF()( ) 1—X(?ﬂ)~q_m5 /*X(am)dam

a€Fy

Note that for a fixed X € N~ (F,), replacing ak’ with &', and using the fact that wy, is the
central character of m yields

L5 (ot D) )t

a€F} k' €GLyyn (Fy)

B (e D) D))o

m(Fq)
For X € N~ (F,), we have trX = 0 and therefore

Tos (5o )~ T 2 (WUO (en (" 2) (7 )

k'€GLp (Fq) XEN—
¢ (0) x (@) - q_ms
g (—trX -(qb ek’) + X (an) day, |,
(ux) - ((er) + SOXELCE [,
We have shown that this summand is constant in the variable &’ on cosets of y,,,)\V )

and constant in the variable X on cosets of z,)\M" ) = N~ (F,) (Proposition . Using
these observations, we get

0 w) - —ms
T (s, W, F¢> = Jrow0 (W1?>¢) + Jroo (Wzl))? ) ’ (Zi<—);((w)) qqms /* X (@m) dat.
Finally, notice that if J,, 4, (W2, 1) # 0, for some v € Vj, then W? defines a Shalika vector
(See also Proposition 2.13:, and therefore w,, = 1 and [,. x (am) da,, = 1. Otherwise,
Jrono (W2,1) =0, for every v € V5. In both cases we get that

¢ (0)x (@) ¢ ™
1—x (@) -q ™
as required. O

JW,T/) (57 WM F¢>) = Jﬂoﬂ/}o (WS, ¢) + Jﬂoﬂ/io (WS, 1) ’

Y

Repeating the same steps for the expression

Jrip (5, Wo 6) / / (wmm(l’” L ) (g ))w<—trx>dx-<5(elgl)|detg|s-1dg,
N\G J g\ M m g

with the same Haar measures, and using the fact that ﬁ; = [} yields
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Proposition 4.8. For any ¢ : F)" — C and v € Vy one has

SO0 () g0
1 — X—l (w) . q—m(l—s) ’

JW?/J (S Wv? F¢>) Jﬂo o (Wz?7 925) + Jﬂoﬂbo (WO

v

Proof. We specify only the modifications that need to be done for the dual Jacquet-Shalika
integral. One begins with

/
], s 0w () )
/F* Fy (e1a7 k") Jag ™) =1 (ay) day.

This expression is obtained by beginning with the Iwasawa decomposition and substituting

a =a;"'-a', where this time we think of A,, ; C A,, by the embedding diag (dj, ..., ;n) —
diag (1,d},,...,a,,). Proceeding using the same steps as in the proof of Theorem we

arrive to the expression

T (8, W, Fy) / da’ / dk/dZ( a') ¢ (bngb™ ') W, (btzkzwmm <k k>)) |det (a')]*" -

. /F F; (elaflkl) |a1|m(178) w-t (ay) day,

where Z = o'~'Xd/, b = diag (1, 1,ah,al, .. .,a;nfl,a;nfl,a;n,a;n), Uy = (Im Ii) and uy =
nztzkz is an Iwasawa decomposition of uz as in Proposition [3.22]
One proceeds as in the previous proof, but this time uses the fact that if ¢, = diag (¢1,t2, ..., tam—1, tom),

then |¢1] = 1 (Theorem [3.15).

After showing that the integral is integrated on o’ € (O*)™', Z € N~ (O), one notices
that e1a; (/1) (k") = eya7t (K')', as the first row of o’ is &;.

The rest of the proof is similar to the previous proof. O

Corollary 4.9. Suppose that wy does not admit a Shalika vector. Then Yz (5) = Vg wo-

Proof. By Proposition 7o admits a Shalika vector if and only if J, 4, (W2, 1) # 0,
for some v € Vj. Therefore if my does not admit a Shalika vector, then J;, (s, W,, F,) =

oo (W2, ) and jmw (s, Wy, Fy) = J7TO wo (W2, ), and therefore vy (8) = Yoy 100 - O

4.3. The ~-factor of a level zero supercuspidal representation admitting a Shalika
vector. As in the previous subsection, let my be an irreducible cuspidal representation of
GLay, (F,) and let 7 be a level zero supercuspidal representation, constructed through my,
with respect to the central character xy : F* — C. In this subsection, we assume that

admits a Shalika vector, and compute the v-factor of .
1 =0
Suppose that v € Vp, such that Jy, 4, (W2, 1) = 1. We choose ¢ (z) = g (z) = {0 ‘ 40
x

Then ¢ (z) = -1, and we have

q

Jr (8, Wy, Fy) = : =X (@) ¢ ™ L(ms,X).



Since Jr, . (W0, 6) = a7 Imoo (W), 1) = 7, we have
- 1 1
JIr W, Fy) = — =q "L 1—s),x Y.
w (s o) = T () i = ¢ (m(1—s).,x")

It follows that Lim(1 ) 1)
qm® ml—s),x"
’yﬂ',w (S) = m ' L
qmx (@) (ms, x)

By choosing ¢ = 1, it is clear that L (s, 7, A?) = L (ms, x), and that L (s, 7, A?) = L (ms, x').
Therefore e, (s) = L

" x (@)’
4.4. The modified functional equation. Using the results of the previous subsections,
we obtain a modified functional equation for the Jacquet-Shalika integral over a finite field.
Unlike the functional equation presented in Subsection (Theorem [2.6)), the modified
equation is valid for all irreducible cuspidal representations of GLs,, (F,), regardless whether
they admit a Shalika vector or not.
Let ¢ : F, — C* be a non-trivial character of F,.

Theorem 4.10. Let w be an irreducible cuspidal representation of GLap, (F,). Then there
exists a rational function 7., (s) € C(¢*), such that for every s € C, W € W (m,v),
pes (]Fg”), one has

Yo (8) (S (W, ) + Jrpy (W, 1) - ¢ (0) ¢ ™ L (ms, 1)) =
Tes W) + Jry (W, 1) - 6 (0) g ™)L (m (1 —s),1).

From this equation alone, one can easily see that if 7 does not admit a Shalika vector,
then v, 4 (s) € C*, and otherwise
¢"* L(m(l-s),1)
qm L (ms,1)
To show this, one uses Proposition[2.13] If w doesn’t admit a Shalika vector, then J , (W, 1) =
0, for every W € W (r, 1), and we get the same functional equation as in Theorem If
7 admits a Shalika vector, then there exists Wy € W (7, ¢) such that J,, (Wy, 1) = 1. One
substitutes W = Wy, ¢ = dy, as in the previous subsection, to get the above form of 7, ,.
Thus the modified functional equation relates between a pole of v, 4 (s) and the existence
of a Shalika vector of 7 in a simple matter.

Yr (s) =
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