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Introduction

Let F be a non-archimedean local �eld. Let π be a smooth irreducible representation
of GLn (F ). By the local Langlands correspondence there exists an nth dimensional rep-
resentation ρ (π) of the Weil-Deligne group W ′

F associated to π. The local exterior square
L-function of π is de�ned via this correspondence as L (s, π,∧2) = L (s,∧2 (ρ (π))). We will
be only interested in the case where n is even.
In [JS90], Jacquet and Shalika study the global exterior square L-function for irreducible

automorphic cuspidal representations on GLn, mainly for the case where n is even. In Section
7 of [JS90], Jacquet and Shalika give an integral representation for the local exterior square
L-function, for unrami�ed irreducible representations of GL2m (F ). On the other hand, in
[Sha90] in Section 7, Shahidi proposes another potential construction for this L-function,
via the Langlands-Shahidi method. In [KR12], Kewat and Raghunathan show that these
three constructions for the local exterior square L-function agree, for all smooth irreducible
representations of GL2m (F ) [KR12, Theorem 1.4].
In [Mat14], Matringe proves the corresponding local functional equation. This functional

equation is already proved by Kewat and Raghunathan in their paper [KR12] using global
arguments. Matringe's proof uses only local arguments.
In this work, we discuss the local non-archimedean theory corresponding to the Jacquet-

Shalika integral mentioned above. In Theorems A-D mentioned below, we give a survey for
known results of this theory. We follow the proofs of Jacquet and Shalika, and of Matringe,
and add details to the original proofs. Our contributions are the theories and the theorems
that appear after Theorem D, although these might be known to the experts of the �eld.
We now present the main theorems that we prove.

The theory over a p-adic �eld. Let F be a p-adic �eld. Let π be an irreducible smooth
generic representation of GL2m (F ).

Theorem (A). There exists rπ,∧2 ∈ R, such that for every s ∈ C, with Re (s) > rπ,∧2,
W ∈ W (π, ψ), φ ∈ S (Fm), the following integral converges absolutely

Jπ,ψ (s,W, φ) =

∫

N\GLm(F )

∫

B\Mm(F )

W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dX · φ (εg) |det g|s dg.

Theorem (B). There exist W ∈ W (π, ψ), φ ∈ S (Fm), such that for every s ∈ C, with
Re (s) > rπ,∧2,

Jπ,ψ (s,W, φ) = 1.

We follow the proofs of Jacquet and Shalika in [JS90, Sections 7.1, 7.3] for Theorems A
and B.

Theorem (C). For a �xed W ∈ W (π, ψ), φ ∈ S (Fm), the function Jπ,ψ (s,W, φ) results in
an element of C (q−s) in the convergence domain, and therefore has a meromorphic contin-
uation. Furthermore, denote

Iπ,ψ = spanC {Jπ,ψ (s,W, φ) | W ∈ W (π, ψ) , φ ∈ S (Fm)} ,
then there exists a unique p (z) ∈ C [z], such that p (0) = 1 and Iπ,ψ = 1

p(q−s)C [q−s, qs]. p (z)

does not depend on ψ. We denote L (s, π,∧2) = 1
p(q−s) .
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Kewat and Raghunathan denote LJS (s, π,∧2) = 1
p(q−s) , and show that every smooth irre-

ducible generic representation π, LJS (s, π,∧2) is the same function as the one constructed
via the local Langlands correspondence (this is shown by Jacquet and Shalika only for un-
rami�ed representations).
As a result of Theorem C, Jπ,ψ (s,W, φ) has a meromorphic continuation to the entire

complex plane, which we keep to denote as Jπ,ψ (s,W, φ).
Assume from now and on that π is supercuspidal. We prove the following theorems.

Theorem (D). There exists an element γπ,ψ (s) ∈ C (q−s), such that for every φ ∈ S (Fm),
W ∈ W (π, ψ), one has

Jπ̃,ψ−1

(
1− s, π̃

((
Im

Im

))
W̃ , φ̂

)
= γπ,ψ (s) · Jπ,ψ (s,W, φ) .

Furthermore,

γπ,ψ (s) = επ,ψ (s) · L (1− s, π̃,∧2)

L (s, π,∧2)
,

where επ,ψ (s) is an invertible element of C [q−s, qs].

We follow the proof of Matringe [Mat12, Mat14] for Theorem D.

Theorem (E). The following are equivalent.

(1) ωπ ≡ 1 and there exists W ∈ W (π, ψ), such that

lπ,ψ (W ) =

∫

ZN\GLm(F )

∫

B\Mm(F )

W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dXdg 6= 0.

(2) γπ,ψ (s) has a pole at s = 1.
(3) L (s, π,∧2) has a pole at s = 0.

We prove Theorem E using the functional equation, which was discussed in Theorem D. A
variation of this theorem is already known for Shahidi's construction of the exterior square
L function (see the introduction of [JNQ08] and Theorem 5.5 of the same paper).

Theorem (F). If ωπ is rami�ed, then L (s, π,∧2) = L (ms, ωπ) = 1. If ωπ is unrami�ed then

L
(
s, π,∧2

)
=
∏

k∈Sπ,ψ

1

1− ωπ ($)
1
m ζkq−s

,

where ζ = e
2πi
m and

Sπ,ψ =
{

0 ≤ k ≤ m− 1 | ∃W ∈ W (π, ψ) ,
∫

ZN\G

(∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX

)
|det g|

2πik−logωπ($)
m log q dg 6= 0

}
.

The theory over a �nite �eld. We also develop an analogous theory corresponding to
Jacquet-Shalika integral, over a �nite �eld Fq. Our main results are the following.
Let π be an irreducible generic representation of GL2m (Fq).
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Theorem (B'). There exist W ∈ W (π, ψ) and φ ∈ S
(
Fmq
)
, such that

1 = Jπ,ψ (W,φ) =
1

[GLm (Fq) : N ] [Mm (Fq) : B]

∑

g∈N\GLm(Fq)

∑

X∈B\Mm(Fq)

W

(
wm,m

(
Im X

Im

)(
g

g

))
·

· ψ (−trX) · φ (εg) .

Assume from now and on that π is cuspidal.

Theorem (D'). Suppose that π does not admit a Shalika vector. Then there exists a constant
γπ,ψ ∈ C∗, such that for every W ∈ W (π, ψ), φ ∈ S

(
Fmq
)
, one has

γπ,ψ · Jπ,ψ (W,φ) = Jπ̃,ψ−1

(
π̃

((
Im

Im

))
W̃ , φ̂

)
.

Let θ : F∗q2m → C∗ be a regular character associated with π.

Theorem (E'). The following are equivalent:

(1) There exists W ∈ W (π, ψ), such that Jπ,ψ (W, 1) 6= 0.
(2) π admits a Shalika vector.
(3) θ �F∗qm≡ 1.

We give an expression for γπ,ψ for m = 1, 2, in terms of θ.

Theorem (G). Suppose that θ �F∗qm 6≡ 1 (i.e. π doesn't admit a Shalika vector). Then

(1) For m = 1,

γ−1
π,ψ =

∑

a∈F∗q

ωπ (a) .ψF (−a) .

(2) For m = 2,

γ−1
π,ψ = T0−

1

q2


∑

a∈F∗q

ωπ (a)ψF (−a)







∑

b∈F∗q




∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b2

∑

β∈F∗q

ψ−1

(
β +

1

β
TrFq4/Fq

(
ξ +

b

ξ

))
θ (ξ)






,

where T0 =

{
q − 1

q
ωπ ≡ 1

0 ωπ 6≡ 1
.

Relating the theories. We conclude this work, by relating the above theories correspond-
ing to Jacquet-Shalika integral, using level zero (depth zero) representations. Our main
results are the following theorems:

Theorem (H). Let (π0, Vπ0) be an irreducible cuspidal representation of GL2m (Fq), and let
π be a level zero representation of GL2m (F ), constructed through π0. Then for every v ∈ Vπ0,
φ ∈ S

(
Fmq
)
, s ∈ C

Jπ,ψ (s,Wv, Fφ) = Jπ0,ψ0

(
W 0
v , φ
)

+ Jπ0,ψ0

(
W 0
v , 1
)
· φ (0)ωπ ($) · q−msL (ms, ωπ) .

As a result, we get a modi�ed version of the functional equation for all cuspidal irreducible
representation π of GL2m (Fq), regardless whether they admit a Shalika vector or not:
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Theorem (D�). There exists an element γπ,ψ (s) ∈ C (q−s), such that for every φ ∈ S
(
Fmq
)
,

W ∈ W (π, ψ), s ∈ C, one has

Jπ̃,ψ−1

(
π̃

((
Im

Im

))
W̃ , φ̂

)
+ Jπ,ψ (W, 1) · φ̂ (0) · q−m(1−s)L (m (1− s) , 1) =

γπ,ψ (s) ·
(
Jπ,ψ (W,φ) + Jπ,ψ (W, 1) · φ (0) · q−msL (ms, 1)

)
.

Furthermore, if π admits a Shalika vector then

γπ,ψ (s) =
qms

qm
L (m (1− s) , 1)

L (ms, 1)
.

Otherwise, γπ,ψ (s) ∈ C∗.
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1. The Jacquet-Shalika integral

Towards this section, F is a �nite �eld or a p-adic �eld. In the case that F is a �nite �eld,

we denote for a ∈ F , |a| =

{
1 a 6= 0

0 a = 0
the trivial absolute value. In the case that F is a

p-adic �eld, we denote by |a| the absolute value of a.
For an l-group G and a vector space V over C, we denote by S (G, V ) the space of Schwartz

functions on G having values in V (smooth functions f : G→ V with compact support). We
also denote S (G) = S (G,C). Note that if G is a �nite group then S (G) = {f : G→ C},
S (G, V ) = {f : G→ V }.

1.1. Preliminaries.

1.1.1. Whittaker model. Let n be a positive integer, G = GLn (F ).
Given a non-trivial character ψ : F → C∗, we de�ne a character, also denoted ψ, on the

upper triangular unipotent matrix subgroup N of G by

ψ







1 a1 ∗ ∗ ∗
1 a2 ∗ ∗

. . .
. . . ∗
1 an−1

1







= ψ

(
n−1∑

k=1

ak

)
.

Let π be a (smooth) representation of G. π is called generic if HomG

(
π, IndGN (ψ)

)
6= 0.

It is known that supercuspidal (cuspidal if F is �nite) representations are generic ([BZ76,
Proposition 5.15.a]).
It is known that if π is irreducible and generic, then dim HomG

(
π, IndGN (ψ)

)
= 1 ([BZ76,

Theorem 5.16], [Bum, Theorem 6.1]). In this case, we denote byW (π, ψ) the unique subspace
of IndGN (ψ) which is equivalent to π. This is called the Whittaker model of π with respect
to ψ.
It is known that for an irreducible representation π of G, the contragredient representation

π̃ is isomorphic to πl where πl (g) = π
(
gl
)
and gl = (g−1)

t
= (gt)

−1
([BZ76, Theorem 7.3]).

Suppose that π is generic and irreducible. For W ∈ W (π, ψ) we de�ne W̃ : G → C by

W̃ (g) = W
(
wn · gl

)
where wn =

(
1

. .
.

1

)
.

Proposition 1.1. The image of the map W 7→ W̃ is W (π̃, ψ−1) (the Whittaker model of π̃

in respect to the character ψ−1). (where G acts on W (π, ψ)
:

by right translations. We denote
this action by ρ̃).

Proof. We denote the action of G on IndGN (ψ) by ρ. Note that
(
ρ̃ (h) W̃

)
(g) = W̃ (gh) =

W
(
wn · glhl

)
= ρ

(
hl
)
W

:
(g) = ρl (h)W
:

(g). Therefore W 7→ W̃ is a homomorphism π̃ ∼=
πl ∼= ρl → ρ̃. It is non-trivial and therefore its image is isomorphic to π̃. We now check that
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for W ∈ W (π, ψ), we have W̃ ∈ IndGN (ψ−1). A direct computation shows that for u ∈ N

u =




1 a1 ∗ ∗ ∗
1 a2 ∗ ∗

. . .
. . . ∗
1 an−1

1



, wn · ul · wn =




1 −an−1 ∗ ∗ ∗
1 −an−2 ∗ ∗

1
. . . ∗
. . . −a1

1



∈ N.

Therefore ψ
(
wnu

lwn
)

= ψ−1 (u), and the proposition follows. �

We denote for g, h ∈ G and W ∈ W (π, ψ), (λ (h)W ) (g) = W (h−1g). Denote for a ∈ F ∗,
ψa (x) = ψ (ax). For W ∈ W (π, ψ) and a ∈ F ∗ denote W a = λ (diag (1, a, . . . , a2m−1))W .

Proposition 1.2. The image of the map W 7→ W a is W (π, ψa).

Proof. It is clear that this map is a non-trivial homomorphism with respect to the action of
right translations. One easily checks that its image is contained in IndGN (ψa). �

1.1.2. Haar measure. LetG be an l-group. It is common knowledge that there exists a unique
(up to multiplication by a positive scalar) right Haar measure which is right invariant to the
action of G, i.e. there exists a measure µr,G such that

∫

G

f (ga) dµr,G (g) =

∫

G

f (g) dµr,G (g) ,

for every Schwartz function f .
Similarly, there exists a unique left Haar measure.

Theorem 1.3. Let K be a closed subgroup of G, both assumed unimodular. There exists a
unique measure µ

K\G invariant to right translations such that for every f ∈ S (G) we have

∫

K\G

(∫

K

f (kg) dµK (k)

)
µ
K\G (g) =

∫

G

f (g) dµG (g)

(See [Lan12, Page 37, Theorem 1]).

Remark 1.4. Note that the map g 7→
∫
K
f (kg) dµK (k) is constant on cosets K\G

In the following we choose for a �nite group G the following normalized Haar measure

∫

G

f (g) dµG (g) =
1

|G|
∑

g∈G
f (g) ,

and therefore we have the following Haar measure on the quotient space: for K ≤ G and
f : K\G → C,

∫

K\G
f (g) dg =

1

[G : K]

∑

g∈K\G
f (g) .
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1.1.3. Fourier transform. Let ψ : F → C∗ be a non-trivial additive character of F .
It is standard knowledge that all (continuous) characters of F are of the form ψa (x) =

ψ (ax) where a ∈ F . Such a is unique.
It follows that all (continuous) characters of F n are of the form ψa (x) = ψ (〈a, x〉) where

a ∈ F n (where 〈a, x〉 = a · xt =
∑n

i=1 aixi) and such a is unique. In the special case of

Mn (F ) ∼= F n2
all (additive continuous) characters have the form ψA (X) = ψ (tr (A ·X))

where A ∈Mn (F ), and such A is unique.
Fix a non-trivial additive character ψF : F → C∗.
For G = F, F n,Mn (F ), the Fourier transform of a Schwartz function f : G→ C is de�ned

as

f̂ (a) =

∫

G

f (x)ψFa (x) dµG (x) ,

where µG is a Haar measure of G. It is known that µG can be normalized such that
ˆ̂
f (a) =

f (−a) (Fourier inversion theorem).
In the case where F is a �nite �eld and the Haar measure is the normalized Haar measure

as chosen before on G, the Fourier inversion theorem has the form

ˆ̂
f (a) =

1

|G|f (−a) .

Let f ∈ S (F n) and let g ∈ GLn (F ). De�ne (ρ (g) f) (x) = f (xg).
A simple change of variables in the integral yields the following:

Proposition 1.5. ρ̂ (g) f = 1
|det g|ρ

(
gl
)
f̂ .

1.2. The Jacquet-Shalika integral. Let m be a positive integer. Let π be an irreducible
generic representation of GL2m (F ), and let ψ : F → C∗ be a non-trivial character of the
additive group F . Let G = GLm (F ) and let be N ≤ G the upper triangular unipotent
subgroup. Let M = Mm (F ) and B ≤ M be the upper triangular subspace. Let ε = εm =(
0 0 . . . 0 1

)
∈ F 1×m. Let σ be the permutation

σ =

(
1 2 3 . . . m m+ 1 m+ 2 m+ 3 . . . 2m
1 3 5 . . . 2m− 1 2 4 6 . . . 2m

)

and let wm,m be the column permutation matrix corresponding to σ, i.e. wm,m = Pσ,col =(
eσ(1) eσ(2) . . . eσ(n)

)
.

Remark 1.6. Note that for an arbitrary matrix (aij)i,j ∈Mn (F ), and for an arbitrary permu-

tation τ ∈ Sn, we have Pτ,col (ai,j)P
−1
τ,col =

(
aτ−1(i)τ−1(j)

)
i,j

and therefore wm,m (ai,j)w
−1
m,m =(

aσ−1(i)σ−1(j)

)
i,j
.

De�nition 1.7 (The Jacquet-Shalika integral). Let s ∈ C, W ∈ W (π, ψ), φ ∈ S (Fm), we
de�ne

Jπ,ψ (s,W, φ) =

∫

N\G

∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dX · φ (εg) |det g|s dg.

13



In case that F is �nite, |det g| = 1 for every g ∈ G and we omit s from the notation:

Jπ,ψ (W,φ) =
1

[G : N ] [M : B]

∑

g∈N\G

∑

X∈B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) · φ (εg) .

Proposition 1.8. The integrands involved are well de�ned (as formal expressions).

Proof. First we show that for a �xed g ∈ G, the function

f (X) = W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X))

is constant on cosets of B\M : If X ′ = X + U where U is an upper triangular matrix.

f (X + U) = W

(
wm,m

(
Im X + U

Im

)(
g

g

))
ψ (−tr (X + U)) .

Denote U =

(
a1 ∗ ∗

. . . ∗
am

)
, a1, . . . , am ∈ F , then

ψ (−tr (X + U)) = ψ

(
−

n∑

k=1

ak

)
ψ (−tr (X)) .

We calculate wm,m
(
Im U

Im

)
w−1
m,m. For a matrix (aij)1≤i,j≤n we have

wm,m (aij)w
−1
m,m =

(
aσ−1(i),σ−1(j)

)
1≤i,j≤n .

It is clear that after conjugation the diagonal is preserved. We notice that the only non-
diagonal entries of

(
Im U

Im

)
that can be non zero after conjugation are those with (σ−1 (i) , σ−1 (j)) =

(i′, j′ +m) where 1 ≤ i′ ≤ j′ ≤ m, i.e

(i, j) = (σ (i′) , σ (j′ +m)) = (2i′ − 1, 2j′) .

Note that i = 2i′−1 < 2i′ ≤ 2j′ = j and therefore wm,m
(
Im U

Im

)
w−1
m,m is an upper triangular

unipotent matrix, i.e. wm,m
(
Im U

Im

)
w−1
m,m ∈ N2m.

Finally we compute the non-zero elements above the diagonal: these are the elements with
index (i, j) with i+1 = j. But the above computation shows i = 2i′−1, j = 2j′ and therefore
i′ = j′ and we get that the elements above the diagonal are exactly a1, 0, a2, . . . , 0, am, i.e.

wm,m

(
Im U

Im

)
w−1
m,m =




1 a1 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗

1 a2 ∗ ∗
. . . 0 ∗

1 am
1



.

Therefore we have ψ
(
wm,m

(
Im U

Im

)
w−1
m,m

)
= ψ (

∑m
k=1 ak). It now follows that f (X + U) =

f (X), as required.
We now show that the expression

h (g) =

∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX · φ (εg) |det g|s

14



is constant on cosets of N\G.
Let u ∈ N . We have |detu| = 1, εu = ε.

h (ug) =

∫

B\M
W

(
wm,m

(
u

u

)(
Im u−1Xu

Im

)(
g

g

))
ψ (−tr (X)) dX · φ (εg) |det g|s .

The automorphism X 7→ u−1Xu preserves the upper triangular matrix group. We substitute
X ′ = u−1Xu, dX ′ = dX and trX = trX ′.
Finally we compute wm,m ( u u )w−1

m,m. As before, the diagonal is preserved under conju-
gation and the only non-diagonal elements of the conjugation which can be non zero are
those having index (σ−1 (i) , σ−1 (j)) = (i′, j′) with 1 ≤ i′ < j′ ≤ m or (σ−1 (i) , σ−1 (j)) =
(i′ +m, j′ +m) i.e. (i, j) = (2i′ − 1, 2j′ − 1) or (i, j) = (2i′, 2j′). Since i′ < j′ we have
2i′ − 1 < 2j′ − 1 and 2i′ < 2j′ and therefore in both cases i < j. Therefore wm,m ( u u )w−1

m,m

is an upper triangular unipotent matrix, i.e. wm,m ( u u )w−1
m,m ∈ N .

We check again the elements above the diagonal: these are elements having index (i, j)
with i + 1 = j. Since in the �rst case, both i and j are odd, and in the second case both
i and j are even, we conclude that all elements above the diagonal are zero, and therefore
ψ
(
wm,m ( u u )w−1

m,m

)
= 1, and we conclude that h (ug) = h (g), as required. �

For a �nite �eld there is no question regarding the integral's convergence. We show in
Subsection 3.2 that for a p-adic �eld F , the integral converges for Re (s) su�ciently large
(larger than rπ,∧2 ∈ R where rπ,∧2 depends on π only).

1.2.1. The dual Jacquet-Shalika integral. Let π be a generic irreducible representation of
GL2m (F ), and let s ∈ C, W ∈ W (π, ψ), φ ∈ S (Fm), we de�ne

J̃π,ψ (s,W, φ) = Jπ̃,ψ−1

(
1− s, π̃

((
Im

Im

))
W̃ , φ̂

)
.

(See Subsections 1.1.1, 1.1.3).
We develop an expression for J̃π,ψ (s,W, φ) which will be useful later.

Recalling that W̃ (g) = W
(
w2mg

l
)
we get

J̃π,ψ (s,W, φ) =

∫

N\G

∫

B\M
W̃

(
w2mw

l
m,m

(
Im X

Im

)l(
g

g

)l(
Im

Im

)l)
ψ (trX) dX·

· φ̂ (εg) |det g|1−s dg,
a direct computation shows that

w2mw
l
m,m

(
I X

I

)l(
g

g

)l(
Im

Im

)l
= w2mwm,m

(
Im

Im

)(
Im −X t

Im

)(
gl

gl

)
.

To proceed, we claim that w2m and wm,m commute: it su�ces to show that the permutations
τ = ( 1 2 ... 2m

2m 2m−1 ... 1 ) and σ commute, as w2m = Pτ,col, wm,m = Pσ,col and Pτ,colPσ,col = Pτ◦σ,col.
If 1 ≤ i ≤ m then τ (σ (i)) = τ (2i− 1) = 2m− (2i− 1) + 1 = 2m− 2i+ 2 and σ (τ (i)) =

σ (2m− i+ 1). Here 2m − i + 1 = m + (m+ 1− i) > m as i < m + 1, and therefore
σ (2m− i+ 1) = 2 (m+ 1− i) = 2m− 2i+ 2.
If 1 ≤ i ≤ m then τ (σ (i+m)) = τ (2i) = 2m−2i+1 and σ (τ (i+m)) = σ (2m− (i+m) + 1) =

σ (m− i+ 1). Here 1 ≤ m − i + 1 ≤ m as 1 ≤ i ≤ m, and therefore σ (m− i+ 1) =
2 (m− i+ 1)− 1 = 2m− 2i+ 1.
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Using the fact that wm,m and w2m commute, and that w2m = ( wm
wm ), we get by a direct

computation that

J̃π,ψ (s,W, φ) =

∫

N\G

∫

B\M
W

(
wm,m

(
Im −wmX twm

Im

)(
wmg

l

wmg
l

))
ψ (trX) dX·

· φ̂ (εg) |det g|1−s dg.
Substituting X = −wmY twm and g = wmh

l, we get trX = −trY , |det g| = |deth|−1 and
εwmh

l = ε1h
l, where ε1 =

(
1 0 . . . 0

)
. Therefore

J̃π,ψ (s,W, φ) =

∫

N\G

∫

B\M
W

(
wm,m

(
Im Y

Im

)(
h

h

))
ψ (−trY ) dY · φ̂

(
ε1h

l
)
|deth|s−1 dh.

1.2.2. Equivariance properties.

De�nition 1.9 (The Shalika subgroup).

S2m =

{(
g X

g

)
| g ∈ GLm (F ) , X ∈Mm (F )

}

We de�ne a character Ψ on the Shalika subgroup by Ψ
((

g X
g

))
= ψ (tr (g−1X)). One

easily checks that this is indeed a character.
We de�ne an action of S2m on S (Fm) by

(
ρ
((

g X
g

))
φ
)

(x) = φ (xg) = (ρ (g)) (x).

Let s ∈ C, such that Jπ,ψ (s,W, φ) converges (respectively such that J̃π,ψ (s,W, φ) con-
verges) for every W ∈ W (π, ψ), φ ∈ S (Fm).

Proposition 1.10. The map Bs : W (π, ψ) × S (Fm) → C, Bs (W,φ) = Jπ,ψ (s,W, φ)

(respectively Bs (W,φ) = J̃π,ψ (s,W, φ)) is a bilinear form which is |det|− s2 · Ψ equivariant
over S2m, i.e. for every

(
g X
g

)
∈ S2m, W ∈ W (π, ψ) and φ ∈ S (Fm) one has

Bs

(
π

((
g X

g

))
W, ρ (g)φ

)
= |det g|−s ψ

(
tr
(
g−1X

))
·Bs (W,φ) .

Proof. It su�ces to prove the claim for elements of the form
(
Im Y

Im

)
and of the form ( h h ).

For elements of the form
(
Im Y

Im

)
we have

Jπ,ψ

(
s, π

((
Im Y

Im

))
W,φ

)
=

∫

N\G

∫

B\M
W

(
wm,m

(
Im gY g−1 +X

Im

)(
g

g

))
ψ (−tr (X)) dX·

· φ (εg) |det g|s dg.
Substituting X ′ = X + gY g−1, dX ′ = dX and tr (X) = tr (X ′)− tr (Y ), yields the requested
result.
For elements of the form ( h h ) we get the result immediately by substituting gh = g′,
|det g|s = |det g′|s |deth|−s.
We now show the statement for the bilinear form Bs (W,φ) = J̃π,ψ (s,W, φ). We use the

expression

J̃π,ψ (s,W, φ) =

∫

N\G

∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dX · φ̂

(
ε1g

l
)
|det g|s−1 dg.
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For elements of the form
(
Im Y

Im

)
the proof is exactly as before.

We check the equivariance of J̃π,ψ for elements of the form ( h h ): we recall that from Propo-

sition 1.5 we have ρ̂ (h)φ = 1
|deth|ρ

(
hl
)
φ̂, and therefore J̃π,ψ

(
s, π

((
h

h

))
W, ρ (h)φ

)

equals

1

|deth|

∫

N\G

∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

)(
h

h

))
ψ (−trX) dX·

· φ̂
(
ε1g

lhl
)
|det g|s−1 dg.

As before, substituting gh = g′ yields

J̃π,ψ

(
s, π

((
h

h

))
W, ρ (h)φ

)
=
|deth|1−s
|deth| J̃π,ψ (s,W, φ) ,

as required. �
1.2.3. Change of the character ψ. As noted in Subsection 1.1.3, given a non-trivial character
ψ : F → C∗, any other non-trivial character of ψ′ : F → C∗ is given by ψ′ (x) = ψa (x) =
ψ (ax), where a ∈ F ∗.
Let a ∈ F ∗. We wish to relate between Jπ,ψ (s,W, φ) and Jπ,ψa (s,W a, φ) (See also Propo-

sition 1.2).

Jπ,ψa (s,W a, φ) =

∫

N\G

∫

B\M
W

(
diag

(
1, a, . . . , a2m−1

)−1
wm,m

(
Im X

Im

)(
g

g

))
·

· ψ (−atrX) dX · φ (εg) |det g|s dg.

After conjugating with wm,m we get w−1
m,mdiag (1, a, . . . , a2m−1)

−1
wm,m =

(
d−1
a

a−1d−1
a

)
, where

da = diag (1, a2, . . . , a2m−2). After further conjugations we get
∫

N\G

∫

B\M
W

(
wm,m

(
Im d−1

a Xdaa
Im

)(
d−1
a g

d−1
a g

)(
Im

a−1Im

))
ψ (−atrX) dX·φ (εg) |det g|s dg.

Replacing d−1
a g = g′, daXd−1

a a = X ′, |det g| = |det g′| · |a|2(
m
2 ), dX ′ = |a|−2(m+1

3 )+(m2 ) dX (as∑
1≤j<i≤m (i− j) =

(
m+1

3

)
), we get

Jπ,ψa (s,W a, φ) = |a|2(
m+1

3 )+(m2 )(2s−1) Jπ,ψ

(
s, π

((
Im

a−1Im

))
W,φa2m−2

)
,

where φa2m−2 (x) = φ (a2m−2 · x) for x ∈ Fm.
Replacing g′′ = a2m−2g′, we get the relation

Jπ,ψa (s,W a, φ) = |a|
m(m−1)(2m−1)

6 ωπ (a)−2(m−1) |a|−m(m−1)s Jπ,ψ

(
s, π

((
Im

a−1Im

))
W,φ

)
.

Similarly, repeating these steps for the expression of J̃π,ψa (s,W a, φ) (except of the substitu-
tion g′′ = a2m−2g′, which is not needed) yields

J̃π,ψa (s,W a, φ) = |a|
m(m−1)(2m−1)

6 |a|m(m−1)(s−1) J̃π,ψ

(
s, π

((
Im

a−1Im

))
W,φ

)
.
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2. The Jacquet-Shalika integral over a finite field

In this section, F is a �nite �eld and ψ : F → C is a �xed non-trivial character of the
additive group F .

2.1. Preliminaries.

2.1.1. The Bessel function. Let n be a positive integer and let (π, Vπ) be a generic irreducible
representation of G = GLn (F ). Therefore there exists a non-zero functional T : Vπ → C
such that 〈T, π (u) v〉 = ψ (u) 〈T, v〉 for every u ∈ N = Nn (F ), and v ∈ Vπ. This functional
is unique up to multiplication by a constant.
Since G is �nite and π is irreducible, Vπ is �nite dimensional and therefore there exists

an inner product (·, ·) on Vπ, with respect to which π is unitary. There also exists a unique
0 6= v0 ∈ Vπ such that (v, v0) = 〈T, v〉 for every v ∈ Vπ which implies π (u) v0 = ψ (u) v0 for
every u ∈ N .
The Bessel function of π with respect to ψ is de�ned as Bπ,ψ (g) = (π(g)v0,v0)

(v0,v0)
. Bπ,ψ (g) does

not depend on the choice of T as dim HomN (π �N , ψ) = 1.
The Bessel function is a Whittaker function Bπ,ψ ∈ W (π, ψ), and satis�es Bπ,ψ (In) = 1.

It also satis�es for every g ∈ G and u1, u2 ∈ N , Bπ,ψ (u1gu2) = ψ (u1u2)Bπ,ψ (g).

Proposition 2.1. [Gel70, Proposition 4.5] The Bessel function is also given by the formula

Bπ,ψ (g) =
1

|N |
∑

u∈N
tr (π (gu))ψ−1 (u) .

Proposition 2.2. [Gel70, Proposition 4.9] Suppose that Bπ,ψ (wd) 6= 0, where w is a permu-
tation matrix, and d is a diagonal matrix. Then

wd =




λ1In1

λ2In2

. .
.

λrInr


 ,

where n1 + · · ·+ nr = n and λ1, . . . , λr ∈ F ∗.

Corollary 2.3. Let g ∈ G. By the Bruhat decomposition we can write g = u1wdu2

where u1, u2 ∈ N , w is a permutation matrix, and d is a diagonal matrix. Bπ,ψ (g) =
Bπ,ψ (u1wdu2) = ψ (u1u2)Bπ,ψ (wd). Therefore if Bπ,ψ (g) 6= 0, then

g = u1




λ1In1

λ2In2

. .
.

λrInr


u2,

where u1, u2 ∈ N , and n1 + · · ·+ nr = n and λ1, . . . , λr ∈ F ∗.
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2.2. Non-vanishing. Let n = 2m be a positive even integer. Let π be a generic represen-
tation of GL2m (F ).
We prove that the bilinear form Jπ,ψ : W (π, ψ) × S (Fm) → C is non-trivial. We use

the Bessel function in the proof. One can avoid this by repeating the proof for the non-
vanishment of the Jacquet-Shalika integral for the case of a p-adic �eld, which we give in
Subsection 3.3. The following calculation will be useful in the sequel.

Proposition 2.4. Let φ = δε : Fm → C be the indicator function of ε =
(
0 . . . 0 1

)
∈

F 1×m, i.e. δε (v) =

{
1 v = ε

0 v 6= ε
and let W (g) = [G : N ] [M : B]Bπ,ψ

(
g · w−1

m,m

)
. Then

Jπ,ψ (W,φ) = 1.

Proof. We write

Jπ,ψ (W,φ) =
∑

g∈N\G
εg=ε

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX) .

Since σ (2m) = 2m, both wm,m and w−1
m,m have ε2m =

(
0 . . . 0 1

)
as their last row. If

the last row of g ∈ G is ε = εm, then the last row of ( g g ) is ε2m. Therefore if εg = ε, then
for any X ∈ M , the matrix wm,m

(
Im X

Im

)
( g g )w−1

m,m has ε2m as its last row. Suppose that

wm,m
(
Im X

Im

)
( g g )w−1

m,m ∈ suppBπ,ψ, then by Corollary 2.3,

u1wm,m

(
Im X

Im

)(
g

g

)
w−1
m,mu2 =




λ1In1

λ2In2

. .
.

λrInr


 ,

for u1, u2 ∈ N2m and λ1, . . . , λr ∈ F ∗ and n1, . . . , nr such that n1 + · · · + nr = 2m. Since
u1, u2 ∈ N2m, the last row of u1, u2 is ε2m and therefore the product on the left hand side
still has ε2m as its last row. This implies nr = 2m, r = 1 and λ1 = 1 and therefore
wm,m

(
Im X

Im

)
( g g )w−1

m,m ∈ N2m. Therefore u = wm,m
(
g Xg

g

)
w−1
m,m is an upper triangular

unipotent matrix. Denote
(
g Xg

g

)
= (aij)ij. Then uij =

(
aσ−1(i),σ−1(j)

)
ij
. For 1 ≤ j < i ≤ m

we have σ (j) = 2j− 1 < 2i− 1 = σ (i), and therefore u has 0 in its (2i− 1, 2j − 1) position,
and therefore aij = gij = 0. uii = 1, for every i, and therefore aii = 1 for every i and
gii = 1 for 1 ≤ i ≤ m. Therefore g is an upper triangular unipotent matrix, i.e. g ∈ N . For
1 ≤ j < i ≤ m we have that (σ (i) , σ (j +m)) = (2i− 1, 2j) and since j+ 1 ≤ i, this implies
2j < 2j + 1 ≤ 2i − 1, and therefore u2i−1,2j = 0, which implies ai,j+m = 0. Thus Xg is an
upper triangular matrix. Therefore X is an upper triangular matrix.
Therefore the sum

Jπ,ψ (W,φ) =
∑

g∈N\G
εg=ε

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX)

runs over exactly one coset of N\G (the coset of Im) and one coset of B\M (the coset of 0),
and we get that Jπ,ψ (W,φ) = Bπ,ψ (I2m) = 1 6= 0. �
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2.3. The functional equation. In this subsection we discuss the functional equation sat-
is�ed by the Jacquet-Shalika integrals over a �nite �eld.

De�nition 2.5. Let (π, Vπ) be a representation of GL2m (F ). We call a vector v ∈ Vπ a
Shalika vector of π, if π

((
g X
g

))
v = Ψ

((
g X
g

))
v, for every

(
g X
g

)
∈ S2m.

Theorem 2.6. Let (π, Vπ) be an irreducible cuspidal representation of GL2m (F ) and suppose
that there doesn't exist a non-zero Shalika vector for π. Then there exists a constant γπ,ψ ∈
C∗, such that

J̃π,ψ (W,φ) = γπ,ψ · Jπ,ψ (W,φ) ,

for every φ : Fm → C and W ∈ W (π, ψ).

This will be proved for a p-adic �eld in Subsection 3.5. The proof is similar for a �nite
�eld.
We give an overview of the proof and elaborate on some parts. Note that we assume that

F is a �nite �eld.
The idea of the proof is to show that the space of bilinear forms B : Vπ × S (Fm) → C

which are Ψ-equivariant is at most one dimensional. Since Jπ,ψ, J̃π,ψ are non-zero elements
of this space, it implies that such a constant exists.
In order to prove that the following space (HomS2m (π ⊗ S (Fm) ,Ψ)) is at most one-

dimensional, we �rst prove the following multiplicity one theorem (Theorem 3.37):

Theorem 2.7. Let (π, Vπ) be an irreducible cuspidal representation of GL2m (F ), then

dim HomP2m∩Mm,m (π, 1) ≤ 1.

Here P2m is the mirabolic subgroup of GL2m (F ) .
Another proof of this theorem for the case that F is a �nite �eld (as in this section) can

be found in [Mos08, Theorem 6.1.2]. We give here a brief overview of the proof that will be
given in Subsection 3.5.
In order to prove this theorem, we need some preparations. Let n be a positive integer.

Suppose that p ≥ q ≥ 0 and p+ q = n. Let

σp,q =

(
1 2 . . . p− q p− q + 1 p− q + 2 . . . p p+ 1 p+ 2 . . . p+ q
1 2 . . . p− q p− q + 1 p− q + 3 . . . p+ q − 1 p− q + 2 p− q + 4 . . . p+ q

)
,

and let wp,q be the column permutation matrix of σp,q. We introduce the following subgroups
of GLn (F ):

M (n)
p,q =

{(
gp

gq

)
| gp ∈ GLp (F ) , gq ∈ GLq (F )

}
p ≥ q ≥ 0

M
(n)
p,q−1 =







gp

gq−1

1


 | gp ∈ GLp (F ) , gq−1 ∈ GLq−1 (F )



 p ≥ q ≥ 1
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and we denote

H(n)
p,q = wp,qM

(n)
p,q w

−1
p,q ,

H
(n−1)
p,q−1 = wp,qM

(n−1)
p,q−1 w

−1
p,q ,

H
(n)
p−1,q−1 =

{(
h

I2

)
| h ∈ H(n−2)

p−1,q−1

}
.

H
(n)
p,q−1 andH

(n−2)
p−1,q−1 can be thought of as subgroups of GLn−1 (F ) and GLn−2 (F ) respectively.

For a positive integer k, we denote by Pk the mirabolic subgroup of GLk (F ). We denote

Uk =

{(
Ik−1 v

1

)
| v ∈ F k−1

}
.

We de�ne for a representation σ of Pk−1, a representation σ′ of Pk−1Uk by σ′ (pu) =
ψ (u)σ (p) (p ∈ Pk−1, u ∈ Uk) and we de�ne a representation Φ+ (σ) of Pk by Φ+ (σ) =
indPkPk−1Uk

(σ′).
We prove the following propositions:

Proposition 2.8. Suppose p ≥ q ≥ 1 with p+q = n. Let (σ, V ) be a representation of Pn−1.
Then there exists an embedding

Hom
Pn∩H(n)

p,q

(
Φ+ (σ) , 1

)
↪→ Hom

Pn−1∩H(n)
p,q−1

(σ, 1) .

Proposition 2.9. Suppose p ≥ q ≥ 2 with p+q = n. Let (σ, V ) be a representation of Pn−2.
Then there exists an embedding

Hom
Pn−1∩H(n)

p,q−1

(
Φ+ (σ) , 1

)
↪→ Hom

Pn−2∩H(n)
p−1,q−1

(σ, 1) .

The proof of Theorem 2.7 follows by using these propositions repeatedly, the fact that for
an irreducible cuspidal representation π of GLn (F ), its restriction to the mirabolic group Pn
is isomorphic to the representation (Φ+)

n−1
(1) ([Gel70, Theorem 2.3]), and by the fact that

P2m ∩Hm,m = wm,m (P2m ∩Mm,m)w−1
m,m.

Next we construct an embedding Λ : HomS2m∩P2m (π,Ψ) → HomP2m∩Mm,m (π, 1) by the
averaging method (Proposition 3.51):

Λ (L) (v) =
1

|GLm (F )|
∑

g∈GLm(F )

L

(
π

((
g

Im

))
v

)
.

Unlike the case of a p-adic �eld, in the case of a �nite �eld there are no convergence issues
with this sum. In order to show that Λ is injective, we use the Fourier transform: let
0 6= L ∈ HomS2m∩P2m (π,Ψ) and v0 ∈ Vπ such that L (v0) 6= 0. We de�ne for a function
η ∈ S (Mm (F )),

vη =
1

|Mm (F )|
∑

X∈Mm(F )

η (X)π

((
Im X

Im

))
v0.

A simple computation shows that

Λ (L) (vη) =
1

|GLm (F )|
∑

g∈GLm(F )

L

(
π

((
g

Im

))
v0

)
η̂ (g) .
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By choosing η such that η̂ = δIm we get that Λ (L) (vη) = 1
|GLm(F )|L (v) 6= 0. Therefore we

get the following corollary:

Corollary 2.10. Let (π, Vπ) be an irreducible cuspidal representation of GL2m (F ), then

dim HomP2m∩S2m (π,Ψ) ≤ 1.

We now move to the proof of Theorem 2.6:

Proof. We show that dim HomS2m (π ⊗ S (Fm) ,Ψ) ≤ 1. Since Jπ,ψ, J̃π,ψ ∈ HomS2m (π ⊗ S (Fm) ,Ψ),
and both are non-zero forms, this will imply that there exists such constant.
We �rst consider the restriction map

HomS2m (π ⊗ S (Fm) ,Ψ)→ HomS2m (π ⊗ S (Fm \ {0}) ,Ψ)

B 7→ B �Vπ×S(Fm\{0}) .

This map is injective. Indeed, suppose that B : Vπ×S (Fm)→ C such that B �Vπ×S(Fm\{0})≡
0 and B 6= 0. Then the map β : Vπ → C de�ned as β (v) = B (v, δ0) is a non-zero linear
functional. Let (·, ·) be an inner product on Vπ, with respect to which π is unitary. Then
there exists a non-zero vector v0 such that β (v) = (v, v0), for every v ∈ Vπ. Let v ∈ Vπ and(
g X
g

)
∈ S2m. From the equivariance properties of B, and since ρ (g) δ0 = δ0, we have that

β

(
π

((
g X

g

))
v

)
= Ψ

((
g X

g

))
β (v) ,

which implies π
((

g X
g

))
v0 = Ψ

((
g X
g

))
v0, i.e. v0 6= 0 is a Shalika vector, which contradicts

our assumption.
We now write

HomS2m (π ⊗ S (Fm \ {0}) ,Ψ) = HomS2m

((
Ψ−1π

)
⊗ S (Fm \ {0}) , 1

)

∼= HomS2m

(
Ψ−1π,S (Fm \ {0}):)

.

We identify Fm\{0} with S2m∩P2m\S2m using the map
(
g X
g

)
7→ εmg and therefore S (Fm \ {0}) ∼=

S
(
S2m∩P2m\S2m

)
= indS2m

S2m∩P2m
(1).

HomS2m (π ⊗ S (Fm \ {0}) ,Ψ) ∼= HomS2m

(
Ψ−1π, indS2m

S2m∩P2m
(1)

:)

∼= HomS2m

(
Ψ−1π, indS2m

S2m∩P2m

(
1̃
))
.

By Frobenius reciprocity

HomS2m

(
Ψ−1π, indS2m

S2m∩P2m
(1)
) ∼= HomPm∩S2m

(
Ψ−1π �Pm∩S2m , 1

)

= HomPm∩S2m (π,Ψ)

By Corollary 2.10, we have dim HomPm∩S2m (π,Ψ) ≤ 1, and the theorem is proved. �

Remark 2.11. As seen in the proof, this proof fails when π admits a Shalika vector. In this
case, a modi�ed functional equation is valid. This is discussed in Subsection 4.4.
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2.3.1. Equivalent conditions for the existence of a Shalika vector. Let (π, Vπ) be an irre-
ducible cuspidal representation of GL2m (Fq), and denote G = GLm (Fq). There exists a
regular character θ : F∗q2m → C∗ which is associated to π [Gre55]. We present an equivalent
criterion for π to admit a Shalika vector, in terms of θ.
We denote

VπNm,m,ψ =

{
v ∈ Vπ | π

((
Im X

Im

))
v = ψ (trX) v, ∀X ∈Mm (Fq)

}
,

a twisted Jacquet module. This space is invariant under the action π (( g g )) for g ∈ G. We
denote its action by πNm,m,ψ (g) = π (( g g )) �VπNm,m,ψ .
A non-zero Shalika vector v is an element 0 6= v ∈ VπNm,m,ψ , such that π (( g g )) v = v for

every g ∈ G, and therefore it exists if and only if HomG

(
1, πNm,m,ψ

)
6= 0.

Due to a result of Prasad [Pra00, Theorem 1], πNm,m,ψ
∼= IndGF∗qm

(
θ �F∗qm

)
(we view F∗qm as

a subgroup of GLm (Fq)). Therefore π admits a Shalika vector if and only if

0 6= HomG

(
1, IndGF∗qm

(
θ �F∗qm

))
.

By Frobenius reciprocity

HomG

(
1, IndGF∗qm

(
θ �F∗qm

))
∼= HomF∗qm

(
1 �F∗qm , θ �F∗qm

)

and the last space is non zero if and only if θ �F∗qm≡ 1, and then it is one dimensional.

Corollary 2.12. Let (π, Vπ) be an irreducible cuspidal representation of GL2m (Fq) and let
θ : F∗q2m → C∗ be a regular character associated with π. Then π admits a non-zero Shalika
vector if and only if θ �F∗qm≡ 1. In this case, the space of Shalika vectors is one dimensional.

We �nish by giving another criterion for admitting a non-zero Shalika vector.

Proposition 2.13. Let (π, Vπ) be an irreducible cuspidal representation of GL2m (Fq). π
admits a non-zero Shalika vector if and only if there exists W ∈ W (π, ψ) such that

Jπ,ψ (W, 1) 6= 0.

Proof. Suppose that there exists W ∈ W (π, ψ) such that

∑

g∈N\G

∑

X∈B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) 6= 0.

Denote

W0 (g) =
∑

k∈N\G

∑

X∈B\M
W

(
g

(
Im X

Im

)(
k

k

))
ψ (−trX) .

Then W0 ∈ W (π, ψ) as a linear combination of right translations of W . W0 6= 0 as
W0 (wm,m) 6= 0. Clearly, W0 is a non-zero Shalika vector.
We now move to prove the other direction. Assume that π admits a non-zero Shalika

vector v0. This vector de�nes a non-zero element T0 ∈ HomS2m (π,Ψ) by T0 (v) = (v, v0),
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where (·, ·) is an inner product with respect to which π is unitary. Since HomS2m (π,Ψ) ⊆
HomP2m∩S2m (π,Ψ), we have HomP2m∩S2m (π,Ψ) 6= 0. Due to Corollary 2.10,

dim HomP2m∩S2m (π,Ψ) ≤ 1,

and therefore we have in this case (that π admits a non-zero Shalika vector) that HomP2m∩S2m (π,Ψ) =
HomS2m (π,Ψ).
We present a non-zero element of HomP2m∩S2m (π,Ψ) de�ned by

W (g) =
∑

k∈N\P

∑

X∈B\M
Bπ,ψ

(
g

(
Im X

Im

)(
k

k

)
w−1
m,m

)
ψ (−trX) ,

where P = Pm (Fq) = {g ∈ GLm (Fq) | εmg = εm}. As above, it is clear thatW ∈ HomP2m∩S2m (π,Ψ).
From Proposition 2.4, W (wm,m) = 1 and therefore W 6= 0. Since HomP2m∩S2m (π,Ψ) =
HomS2m (π,Ψ), we have W ∈ HomS2m (π,Ψ). A direct computation shows that

Jπ,ψ (W, 1) = W (wm,m) 6= 0.

�

2.4. Computations. We now compute γπ,ψ for cuspidal representations of GL2m (Fq) that
don't admit a Shalika vector, where m = 1, 2. We begin with a general computation.
Let f : Fmq → C be de�ned as

f (x) = δ−ε1 (x) =

{
1 x = −ε1 = (−1, 0, . . . , 0)

0 x 6= −ε1

.

Then

f̂ (y) =
1∣∣Fmq
∣∣
∑

a∈Fmq

f (a)ψF (〈a, y〉) =
1

qm
ψF (−y1) ,

and by Fourier inversion formula,
ˆ̂
f (x) = 1

qm
f (−x), and therefore if h (x) = ψF (−x1), then

ĥ (x) = δε1 (x).

We substitute φ (x) = ψF (−x1) (φ̂ (x) = δε1 (x)) andW (g) = [G : N ] [M : B]Bπ,ψ
(
gw−1

m,m

)

in the equality

J̃π,ψ (W,φ) = γπ,ψ · Jπ,ψ (W,φ) ,

in order to compute γπ,ψ.
We begin with computing

J̃π,ψ (W,φ) =
∑

g∈N\G

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX) · δε1

(
ε1g

l
)
.

δε1
(
ε1g

l
)
equals 1 if and only if the �rst row of gl equals ε1 =

(
1 0 . . . 0

)
. This is true

if and only if the �rst column of g−1 is εt1. By matrix multiplication we see that this is true
if and only if the �rst column of g is εt1.
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Suppose that g ∈ G such that g has εt1 as its �rst column. We recall that by Corollary 2.3
that if wm,m

(
Im X

Im

)
( g g )w−1

m,m ∈ suppBπ,ψ, then

u1wm,m

(
Im X

Im

)(
g

g

)
w−1
m,mu2 =




λ1In1

λ2In2

. .
.

λrInr


 ,

for u1, u2 ∈ N2m and λ1, . . . , λr ∈ F ∗ and n1, . . . , nr, such that n1 + · · · + nr = 2m. Since
g has εt1 as its �rst column, ( g g ) has εt1 ∈ F 2m×1 as its �rst column. Since σ (1) = 1,
the elements wm,m, w

−1
m,m have εt1 ∈ F 2m×1 as their �rst column, and since u1, u2 are upper

triangular unipotent elements, they also have εt1 ∈ F 2m×1 as their �rst column. Therefore
the left hand side has εt1 as its �rst column, and therefore r = 1, λ1 = 1 and n1 = 2m, and
we have wm,m

(
Im X

Im

)
( g g )w−1

m,m ∈ N2m. As in the proof of Proposition 2.4, this implies
that g ∈ N , X ∈ B, and therefore

J̃π,ψ (W,φ) = Bπ,ψ (I2m) = 1.

Therefore

γ−1
π,ψ = Jπ,ψ (W,φ) =

∑

g∈N\G

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX) · ψF (−gm1) .

We denote for a ∈ Fq,

Sa =
∑

g∈N\G
gm1=a

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX) .

Then γ−1
π,ψ =

∑
a∈Fq Saψ

F (−a). For a 6= 0, replacing g with ag in the expression of Sa yields

Sa = ωπ (a)S1. Therefore γ
−1
π,ψ = S0 + S1

∑
a∈F∗q ψ

F (−a)ωπ (a).

Note that if the central character ωπ is not trivial, then ωπ (a) 6= 0 for some a ∈ F∗q, and
then by replacing g with ag in S0 we get S0 = ωπ (a)S0, and therefore S0 = 0.
Regarding S1, we de�ne for v ∈ Fm−1

q ,

S(1,v) =
∑

g∈N\G
εmg=(1,v)

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX) ,

and therefore S1 =
∑

v∈Fm−1
q

S(1,v). For v ∈ Fm−1
q , denote uv =

(
1 v
Im−1

)
, then

(
1 0 . . . 0

)
uv =(

1 v
)
, and therefore ε1 =

(
1 0 . . . 0

)
=
(
1 v

)
u−1
v . Substituting g = g′uv in S(1,v) yields

S(1,v) =
∑

g′∈N\G
εmg′=ε1

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g′

g′

)(
uv

uv

)
w−1
m,m

)
ψ (−trX) .

We now compute wm,m ( uv uv )w−1
m,m: its diagonal consists of the element 1 only. The only

possible non-diagonal non-zero elements of uv are those with index (1, j) and (m+ 1,m+ j)
with 1 < j ≤ m. These move after conjugation to (σ (1) , σ (j)) = (1, 2j − 1) and (σ (m+ 1) , σ (m+ j)) =
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(2, 2j). Therefore wm,m ( uv uv )w−1
m,m is an upper triangular unipotent matrix, with no non-

zero elements above its diagonal, and therefore ψ
(
wm,m ( uv uv )w−1

m,m

)
= 1. Hence

Bπ,ψ
(
wm,m

(
Im X

Im

)(
g′

g′

)(
uv

uv

)
w−1
m,m

)
= Bπ,ψ

(
wm,m

(
Im X

Im

)(
g′

g′

)
w−1
m,m

)
.

Therefore we have S(1,v) = Sε1 , and S1 = qm−1Sε1 and γ
−1
π,ψ = S0+qm−1

(∑
a∈F∗q ωπ (a)ψF (−a)

)
Sε1 .

2.4.1. Computation for m = 1. For m = 1, G = GL1 (Fq) = F∗q and M = M1 (Fq) = Fq and
therefore B = M and N = {1} and the condition εg = ε1 implies g = 1. Therefore

Sε1 = Bπ,ψ
(
wm,m

(
1 0
0 1

)(
1 0
0 1

)
w−1
m,m

)
= Bπ,ψ (I2) = 1,

and S0 = 0 as the condition g11 = 0 implies g = 0 but then g is not invertible, and hence S0

is the empty sum. qm−1 = 1 and we have

γ−1
π,ψ =

∑

a∈F∗q

ωπ (a)ψF (−a) .

We conclude this in a theorem:

Theorem 2.14. Let π be an irreducible cuspidal representation of GL2 (Fq). Then

γ−1
π,ψ =

∑

a∈F∗q

ωπ (a)ψF (−a) .

2.4.2. Computation for m = 2. For m = 2, G = GL2 (Fq). Let θ : F∗q4 → C be a regular
character associated with π and assume that θ �F∗

q2
6≡ 1, so that π doesn't admit a Shalika

vector.
We begin with computing S0 in the case that the central character is trivial. Let g ∈

GL2 (Fq), such that g21 = 0. Then g = ( a c0 b ) =
(

1 c
b
1

)
( a b ), and therefore g ∈ N ( a b ) for

a, b ∈ F∗q. Then

S0 =
∑

a∈F∗q
b∈F∗q

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
diag (a, b)

diag (a, b)

)
w−1
m,m

)
ψ (−trX) .

Taking bI4 out of Bπ,ψ, in exchange of multiplying by the central character ωπ (b) = 1, and
then replacing ab−1 with a and ( a 1 ) with g we get

S0 =
∑

b∈F∗q

∑

g∈N\G
εg=ε

∑

X∈B\M
Bπ,ψ

(
wm,m

(
Im X

Im

)(
g

g

)
w−1
m,m

)
ψ (−trX) .

By Proposition 2.4, we get S0 = q − 1. We conclude that S0 =

{
0 ωπ 6≡ 1

q − 1 ωπ ≡ 1
.

We now compute Sε1 . Suppose g ∈ GL2 (Fq) with εmg = ε1 i.e. g = ( a b1 0 ) with b ∈ F∗q.
Then g = ( 1 a

1 ) ( 0 b
1 0 ), and therefore g ∈ N2 (Fq) ( 0 b

1 0 ).
Since

B2(Fq)\M2(Fq) ∼= N−2 (Fq) ,
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where N−2 (Fq) is the subspace consisting of lower triangular nilpotent elements of M2 (Fq),
it su�ces to consider only these elements.
Let X = ( 0 0

x 0 ) and let g = ( 0 b
1 0 ) where b ∈ F∗q. Then a simple computation shows that

wm,m

(
I X

I

)(
g

g

)
w−1
m,m =




0 0 b 0
0 0 0 b
1 0 0 0
0 1 0 0







1 0 xb 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Therefore

Bπ,ψ
(
wm,m

(
I X

I

)(
g

g

)
w−1
m,m

)
ψ (−tr (X)) = Bπ,ψ

((
0 bI2

I2 0

))
,

which implies

Sε1 =
∑

x∈Fq

∑

b∈F∗q

Bπ,ψ
((

0 bI2

I2 0

))
= q

∑

b∈F∗q

Bπ,ψ
((

0 bI2

I2 0

))
.

We use the values of the Bessel function for GL4 (Fq), which are computed by Deriziotis and
Gotsis [DG98, Page 103]. In our case

w = w6 =

(
0 I2

I2 0

)
, t =

(
µI2 0
0 νI2

)
,

where µ = b, ν = 1. The value Bπ,ψ (tw) is given by

Bπ,ψ (tw) =
∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=µ2ν2

F6 (ξ, t) θ (ξ) ,

where

F6 (ξ, t) = −q−4


F ′6 (ξ, t) +

∑

β∈F∗q

ψ

(
−β +

a1 (ξ) + a3 (ξ)µν

βµν2

)
 ,

and

F ′6 (ξ, t) =

{
−q ξ ∈ Fq2 \ Fq and µν = −NFq2/Fq (ξ)

0 otherwise
,

a3 (ξ) = −TrFq4/Fq (ξ) = −
(
ξ + ξq + ξq

2

+ ξq
3
)
,

a1 (ξ) = −
(
ξ1+q+q2 + ξ1+q+q3 + ξ1+q2+q3 + ξq+q

2+q3
)
,

NFq4/Fq (ξ) = ξ1+q+q2+q3 ,

NFq2/Fq (ξ) = ξq+1.

In our case,

F6 (ξ, t) =− q−4


F ′6 (ξ, t) +

∑

β∈F∗q

ψ

(
−β +

a1 (ξ) + a3 (ξ) b

βb

)
 .
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Hence

Bπ,ψ (tw) =
∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b2

F6 (ξ, t) θ (ξ)

=− 1

q4

∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b2

∑

β∈F∗q

ψ

(
−β +

a1 (ξ)− bTrFq4/Fq (ξ)

βb

)
θ (ξ) +

1

q3

∑

ξ∈Fq2\Fq
NF

q2
/Fq (ξ)=−b

θ (ξ) ,

and therefore

qm−1Sε1 = qm−1 · q
∑

b∈F∗q

Bπ,ψ
((

0 bI2

I2 0

))

=
∑

b∈F∗q



− 1

q2

∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b2

∑

β∈F∗q

ψ

(
−β +

a1 (ξ)− bTrFq4/Fq (ξ)

βb

)
θ (ξ) +

1

q

∑

ξ∈Fq2\Fq
NF

q2
/Fq (ξ)=−b

θ (ξ)



.

It is clear that
∑

b∈F∗q
∑

ξ∈Fq2\Fq
NF

q2
/Fq (ξ)=−b

θ (ξ) =
∑

ξ∈F∗
q2
θ (ξ) −∑ξ∈F∗q θ (ξ), as −b runs on all

the norms of elements of Fq2 \ Fq. Since θ �F∗
q2
6≡ 1,

∑
ξ∈F∗

q2
θ (ξ) = 0. Regarding the sum

over F∗q, Green's formulas imply that ωπ = θ �F∗q , and therefore we have
∑

ξ∈F∗q θ (ξ) ={
q − 1 ωπ ≡ 1

0 ωπ 6≡ 1
. We also notice that if ωπ ≡ 1, then

∑
a∈F∗q ωπ (a)ψF (−a) = −1. Combin-

ing these implies

γ−1
π,ψ = T0 −

1

q2


∑

a∈F∗q

ωπ (a)ψF (−a)







∑

b∈F∗q




∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b2

∑

β∈F∗q

ψ

(
−β +

a1 (ξ)− bTrFq4/Fq (ξ)

βb

)
θ (ξ)






,

where T0 = S0 + 1
q

(q − 1) =

{
q − 1

q
ωπ ≡ 1

0 ωπ 6≡ 1
.

Using the relation a1 (ξ) = −NFq4/Fq (ξ) · TrFq4/Fq

(
1
ξ

)
, we obtain the following theorem.

Theorem 2.15. Let π be an irreducible cuspidal representation of GL4 (Fq). Then

γ−1
π,ψ = T0 −

1

q2


∑

a∈F∗q

ωπ (a)ψF (−a)







∑

b∈F∗q




∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b2

∑

β∈F∗q

ψ−1

(
β +

1

β
TrFq4/Fq

(
ξ +

b

ξ

))
θ (ξ)






,
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where T0 =

{
q − 1

q
ωπ ≡ 1

0 ωπ 6≡ 1
.
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3. The Jacquet-Shalika integral over a p-adic field

In this section, F is a p-adic �eld. We denote by O the ring of integers of F , P the unique
prime ideal of O, and $ a uniformizer of F (a generator of P). We denote q =

∣∣O/P
∣∣.

3.1. Preliminaries.

3.1.1. Decomposition of Haar measures. Let G be an l-group. It is common knowledge
that there exists a unique (up to multiplication by a positive scalar) measure which is right
invariant to the action of G, i.e. there exists a measure µG such that

∫

G

f (ga) dµr,G (g) =

∫

G

f (g) dµr,G (g) ,

for every f ∈ S (G), a ∈ G. A similar result holds for a left invariant Haar measure.
We will need some decomposition theorems.

Theorem 3.1. Let G be a locally compact unimodular group, and let P,K ≤ G be two closed
subgroups of G, such that G = PK and such that P ∩K is compact. Then a Haar measure
on G is given by

∫
K

∫
P
f (pk) dµl,Pdµr,K where dµl,P is a left Haar measure on P and dµr,K

is a right Haar measure on K.

Theorem 3.2. Let B be a locally compact group, and suppose that B = AnN where A,N are
closed subgroups of B. Then a left Haar measure on B is given by

∫
A

∫
N
f (an) dµl,N (n) dµl,A (a)

where µl,A, µl,N are left Haar measures corresponding to A,N .
Another form for a left Haar measure on B is given by

∫
A
δ−1
B (a)

∫
N
f (na) dµl,N (n) dµl,A (a)

where δB is the Haar modular function of the group B, i.e:
∫
B
f (gb) dµl,B (g) = δB (b)

∫
B
f (g) dµl,B (g)

(b ∈ B).
3.1.2. Iwasawa decomposition. Let n be a positive integer. Denote G = GLn (F ), K =
GLn (O) and denote by B the Borel subgroup of G, consisting of invertible upper-triangular
matrices. B is a closed subgroup of G.
The Iwasawa decomposition of G is given by G = BK.
It is standard knowledge that G is unimodular. K is also unimodular as a compact group.
Since B ∩K is compact, we get the following decomposition of the Haar measure (using

Theorem 3.1): Given a function f ∈ C∞ (G) (i.e. a smooth function f : G→ C) we have
∫

G

f (g) dµG (g) =

∫

B

∫

K

f (bk) dµK (k) dµB (b) .

We denote by A ⊆ G the diagonal matrix subgroup of G and by N the upper triangular
unipotent matrix subgroup of G. It is clear that B = A n N . N,A are unimodular. We
write the decomposition of the Haar measure on B as well (using Theorem 3.2):

∫

B

f (b) dµB (b) =

∫

A

δ−1
B (a)

∫

N

f (ua) dµN (u) dµA (a) ,

where δ−1
B (diag (a1, . . . , an)) =

∏
1≤i<j≤n

∣∣∣ajai
∣∣∣, and we get the decomposition

∫

G

f (g) dµG (g) =

∫

A

∫

N

∫

K

δ−1
B (a) · f (uak) dµK (k) dµN (u) dµA (a) .
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From the uniqueness of the measure µ
N\G (see Theorem 1.3), we conclude that for f ∈

C∞
(
N\G

)
∫

N\G
f (g) dµ

N\G (g) =

∫

A

∫

K

δ−1
B (a) · f (ak) dµK (k) dµA (a) .

3.1.3. Local zeta integrals.

Theorem 3.3 (Local zeta integrals of Tate). Let χ : F ∗ → C∗ be a unitary character of F
and let φ ∈ S (F ), s ∈ C.

(1) The integral

Z (s, φ, χ) =

∫

F ∗
φ (x)χ (x) |x|s dµF ∗ (x)

converges absolutely for Re (s) > 0. It converges to an element of C (qs) and therefore
has a meromorphic continuation to the entire complex plane.

(2) De�ne L (s, χ) =

{
1

1−χ($)q−s χ is unrami�ed (χ �O∗≡ 1)

1 χ is rami�ed
. Then

{Z (s, φ, χ) | φ ∈ S (F )} = L (s, χ) · C
[
q−s, qs

]
.

(See [GH11, Remark 2.3.3, Theorem 2.3.13, Theorem 2.4.13]).

Theorem 3.4 (Local zeta integrals of Godement and Jacquet). Let π be an irreducible
smooth representation of G = GLn (F ), φ ∈ S (Mn (F )), s ∈ C. Let f : G→ C be a matrix

coe�cient of π, i.e. f (g) = fv,ṽ (g) = 〈ṽ, π (g) v〉 for v ∈ Vπ, ṽ ∈ Vπ
:
.

(1) There exists some rπ ∈ R depending on π only such that the integral

Z (s, φ, f) =

∫

G

φ (g) f (g) |det g|s dµG (g)

converges absolutely for Re (s) > rπ. It converges to an element of C (qs) and there-
fore has a meromorphic continuation to the entire complex plane.

(2) There exists a unique element p (X) ∈ C [X] with p (0) = 1 such that
{
Z

(
s+

n− 1

2
, φ, fv,ṽ

)
| φ ∈ S (F ) , v ∈ Vπ, ṽ ∈ Vπ

:
}

=
1

p (q−s)
· C
[
q−s, qs

]
.

We denote L (π, s) = 1
p(q−s) .

(See [GJ72, Page 30, Theorem 3.3]).

Theorem 3.5. Let π be an irreducible smooth supercuspidal representation of GLn (F ),
where n > 1. Then L (π, s) = 1. [Jac79, Example 1.3.5]

3.1.4. Estimates on Whittaker functions. Let a1, . . . , an−1 ∈ F ∗. We denote

m (a1, a2, . . . , an−1) = diag (a1a2 · · · · · an−1, a2 · · · · · an−1, . . . , an−2an−1, an−1, 1) .

Proposition 3.6. Let π be a generic irreducible representation of GLn (F ). Let W ∈
W (π, ψ). De�ne f : (F ∗)n−1 → C by

f (a1, . . . , an−1) = W (m (a1, a2, . . . , an−1)) .
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Then f is locally constant. Furthermore, for every 1 ≤ i0 ≤ n− 1 there exists Ri0 > 0, such
that f (a1, . . . , an−1) = 0 for a1, . . . , an−1 ∈ F ∗ having |ai0| > Ri0.

Proof. Since π is smooth, there exists an open subgroup U ⊆ G, such that for every g ∈ G
and u ∈ U , we have W (gu) = W (g). Intersecting with the diagonal subgroup of G yields
a subgroup of the form A ∩ U = {diag (b1, b2, . . . , bn)}, where b1, . . . , bn belong to open
subgroups of F ∗. From continuity of the map

(a1, . . . , an−1) 7→ m (a1, . . . , an−1)

we get that the set

U ′ =

{(
b1

b2

,
b2

b3

, . . . ,
bn−2

bn−1

, bn−1

)
| diag (b1, b2, . . . , bn−1, 1) ∈ U

}

is open. Since W is invariant to right translations by elements of U , f is invariant to
multiplication by elements of U ′. Therefore f is locally constant.
Let KM = In+$MMn (O) be a congruence subgroup of GLn (O), such thatW is invariant

under right translations of KM .
Let 1 ≤ i0 ≤ n− 1. Consider the unipotent radical associated to the partition (i0, n− i0):

N(i0,n−i0) =

{(
Ii0 ∗

0(n−i0)×i0 In−i0

)}
.

Then for every element u ∈ KM ∩N(i0,n−i0) and g ∈ G2m we have W (gu) = W (g). On the
other hand, taking g = diag (t1, . . . , tn) yields gug−1 ∈ N(i0,n−i0) and therefore

W (gu) = W
((
gug−1

)
g
)

= ψ
(
gug−1

)
W (g) .

Since u ∈ N(i0,n−i0), the element gug−1 has zeros above its diagonal, except for the place

(i0, i0 + 1), where it has the value
ti0
ti0+1

ui0,i0+1. Therefore

W (gu) = ψ

(
ti0
ti0+1

ui0,i0+1

)
W (g) ,

and we get that W (g) = ψ
(

ti0
ti0+1

ui0,i0+1

)
W (g), for every u ∈ KM ∩ N(i0,n−i0). Suppose

ψ �PN0≡ 1 and ψ �PN0−1 6≡ 1 (i.e. PN0 = $N0O is the conductor of ψ). If
∣∣∣ ti0
ti0+1

∣∣∣ >
q−N0 · qM , then we can choose an element u ∈ KM ∩N(i0,n−i0), such that ψ

(
ti0
ti0+1

ui0,i0+1

)
6= 1

(by choosing a suitable |ui0,i0+1| ≤ q−M and placing zeros in other non-diagonal entries),

and therefore from the equality W (g) = ψ
(

ti0
ti0+1

ui0,i0+1

)
W (g), we have that W (g) = 0.

Translating this to f , we get that f (a1, a2, . . . , an−1) = 0 for |ai0 | > Ri0 , where Ri0 =
q−N0 · qM . �
Proposition 3.7. Let π be a generic irreducible supercuspidal representation. Let W ∈
W (π, ψ) be a Whittaker function. De�ne f as above. Then f ∈ S

(
(F ∗)n−1).

Proof. It follows from the previous proposition that f is locally constant and vanishes when-
ever |ai| is large for some 1 ≤ i ≤ n− 1. We show that f vanishes whenever |ai| is small, for
some 1 ≤ i ≤ n− 1. Combining with the previous result, this yields

suppf ⊆ {(a1, . . . , an−1) | ∀1 ≤ i ≤ n, r ≤ |ai| ≤ R} ,
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where r, R > 0. The right hand side set is a compact subset of (F ∗)n−1 and therefore suppf
is compact as a closed subset of (F ∗)n−1 contained in a compact set.
Since π is supercuspidal,

W (π, ψ) = spanC {ρ (u)W ′ −W ′ | u ∈ Nα,W
′ ∈ W (π, ψ)} ,

where α 6= (n) is a partition of n and Nα is the unipotent radical of GLn (F ) corresponding
to α (This is true for any partition α 6= (n)).
Let 1 ≤ i0 ≤ n− 1. Taking α = (i0, n− i0) we get that

W =
l∑

i=1

(
ρ
(
u(i)
)
Wi −Wi

)
,

where l ≥ 0, (Wi)
l
i=1 ⊆ W (π, ψ) and

(
u(i)
)l
i=1
⊆ N(i0,n−i0). For every g ∈ G we have

W (g) =
l∑

i=1

(
Wi

(
gu(i)

)
−Wi (g)

)
.

Taking g = diag (t1, . . . , tn) as before yields

W (g) =
l∑

i=1

(
Wi

(
gu(i)g−1g

)
−Wi (g)

)

=
l∑

i=1

(
ψ

(
ti0
ti0+1

u
(i)
i0,i0+1

)
− 1

)
Wi (g) .

Suppose that ψ �PN≡ 1 and ψ �PN−1 6≡ 1 (i.e. PN is the conductor of ψ). Therefore if∣∣∣ ti0
ti0+1

u
(i)
i0,i0+1

∣∣∣ ≤ q−N for every 1 ≤ i ≤ l, i.e.
∣∣∣∣
ti0
ti0+1

∣∣∣∣ ·
l

max
i=1

∣∣∣u(i)
i0,i0+1

∣∣∣ ≤ q−N .

Then we have ψ
(

ti0
ti0+1

u
(i)
i0,i0+1

)
= 1, for every 1 ≤ i ≤ l, and thereforeW (g) = 0. Translating

this to f , we get that f (a1, . . . , an−1) = 0 for a1, . . . , an−1 ∈ F ∗ having |ai0| ≤ ri0 , where

ri0 = q−N

max
{

1,maxli=1

∣∣∣u(i)i0,i0+1

∣∣∣} . �

Proposition 3.8. Let G be an l-group and π be a smooth representation of G. Suppose that
α : X → G is a continuous map where X is a compact topological space. Let v ∈ Vπ, then
there exist a �nite number of independent vectors (vi)

N
i=1 and smooth functions (αi)

N
i=1 with

αi : X → C such that

π (α (x)) v =
N∑

i=1

αi (x) vi.

Proof. Since α is continuous, α (X) ⊆ G is compact. Since π is smooth, stabGv is open, and
therefore the cover α (X) ⊆ ⋃x∈X α (x) · stabGv has a �nite sub-cover

α (X) ⊆
M⋃

i=1

α (xi) · stabGv.
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Therefore

spanC {π (α (x)) v | x ∈ X} ⊆ spanC {π (α (xi)) v | 1 ≤ i ≤M}

is �nite dimensional. Choose a basis (vi)
N
i=1 for spanC {π (α (x)) v | x ∈ X}. Therefore for

every x ∈ X there exist (αi (x))Ni=1 ⊆ C such that

π (α (x)) v =
N∑

i=1

αi (x) vi.

We show that αi are smooth functions.
Let x0 ∈ X. Since stabGv is open, so is α (x0) · stabGv. Therefore, from continuity, the

inverse image α−1 (α (x0) · stabGv) is open. Denote this set as Ux0 . For every x ∈ Ux0 , we
have α (x) ∈ α (x0) · stabGv, and therefore π (α (x)) v = π (α (x0)) v, which implies

N∑

i=1

αi (x0) vi =
N∑

i=1

αi (x) vi.

Since (vi)
N
i=1 are independent, αi (x0) = αi (x), for every 1 ≤ i ≤ N . We have shown that for

every 1 ≤ i ≤ N , αi (x0) = αi (x), for every x ∈ Ux0 , and therefore (αi)
N
i=1 are smooth. �

Using Propositions 3.7 and 3.8 (with G = X = GLn (O), α = id) we obtain the following:

Corollary 3.9. Let π be an irreducible supercuspidal representation of GLn (F ) and let W ∈
W (π, ψ). Then for a = m (a1, . . . , an−1) and k ∈ GLn (O) the function f (a1, . . . , an−1, k) =
W (ak) is an element of S

(
(F ∗)n−1 ×GLn (O)

)
.

Proof. Using Proposition 3.8 we writeW (ak) =
∑N

i=1 αi (k)Wi (a), where αi : GLn (O)→ C
are smooth. Since GLn (O) is compact, (αi)

N
i=1 are Schwartz functions. We then use Propo-

sition 3.7 to obtain that fi ∈ S
(
(F ∗)n−1), where fi (a1, . . . , an−1) = Wi (m (a1, . . . , an−1)),

and the corollary follows. �

3.1.5. Finite functions. Before stating the asymptotic expansion of Whittaker functions in
the general case (where π isn't necessarily supercuspidal), we shortly review the topic of
�nite functions of (F ∗)n. We will mainly need Proposition 3.11.

De�nition 3.10. Let G be an Abelian l-group. A �nite function f : G → C is a smooth
function such that the translations of f span a �nite dimensional space.

Proposition 3.11. f : (F ∗)n → C is a �nite function if and only if

f ∈ spanC

{
n∏

i=1

χi (ai) logmi |ai| | 0 ≤ mi ∈ Z, χi : F ∗ → C∗ is a character of F ∗
}
.

(See [JL70, Section 8]).

Recall that every character χ : F ∗ → C∗ can be written uniquely in the form χ (a) =
|a|rχ · ωχ (a) where rχ ∈ R and ωχ : F ∗ → C∗ is a unitary character. We denote < (χ) = rχ.
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3.1.6. Asymptotic expansion of Whittaker functions in the general case.

Proposition 3.12. Let π be a generic irreducible representation of GLn (F ). Then there
exist �nite functions (ξi)

t
i=1 on (F ∗)n−1, such that for any W ∈ W (π, ψ) there are t functions

(φi)
t
i=1 ⊆ S (F n−1), such that

W (m (a1, . . . , an−1)) =
t∑

i=1

ξi (a1, . . . , an−1) · φi (a1, . . . , an−1) ,

where a = m (a1, . . . , an−1) (See [JPSS79, Proposition 2.2]).

Consider the Haar modular function of the Borel subgroup Bn−1 ⊆ GLn−1 (F ), δBn−1 :

An−1 → C, δ−1
B (diag (a1, . . . , an−1)) =

∏
1≤i<j≤n−1

∣∣∣ajai
∣∣∣. The function δ

1
2
Bn−1

is a non-vanishing

�nite function (it is a positive character) and therefore by modifying the set (ξi)1≤i≤t in
Proposition 3.12, it is clear that one can write

W (a) = δ
1
2
Bn−1

(a)
t∑

i=1

ξi (a1, . . . , an−1) · φi (a1, . . . , an−1) ,

where a = m (a1, . . . , an−1) and φi ∈ S (F n−1).
Furthermore, from Proposition 3.11, there exist �nite sets (Cj)

n−1
j=1 of characters χ : F ∗ →

C∗ and non-negative integers (rj)
n−1
j=1 , such that

(ξi)
t
i=1 ⊆ spanC

{
χ (a1, . . . , an−1) =

n−1∏

j=1

χj (aj) logmj |aj| | χj ∈ Cj, mj ∈ Z | 0 ≤ mj ≤ rj

}
.

Denote for such sets and integers

X = X(rj ,Cj)
n−1
j=1

=

{
χ (a1, . . . , an−1) =

n−1∏

j=1

χj (aj) logmj |aj| | χj ∈ Cj, mj ∈ Z | 0 ≤ mj ≤ rj

}
.

We may assume that {ξi | 1 ≤ i ≤ t} = X, as X spans the original set.
Finally, using Proposition 3.8 (as in Corollary 3.9), we obtain the following:

Proposition 3.13. Let π be a generic irreducible representation of GLn (F ). Then for each
1 ≤ j ≤ n − 1, there exist an integer rj and a �nite set Cj of characters χ : F ∗ → C∗,
such that for X = X(rj ,Cj)

n−1
j=1

and for any W ∈ W (π, ψ), there are functions (φξ)ξ∈X ⊆
S (F n−1 ×GLn (O)), such that

W (ak) = δ
1
2
Bn−1

(a)
∑

ξ∈X
ξ (a1, . . . , an−1) · φξ (a1, . . . , an−1, k) ,

for every a = m (a1, . . . , an−1), and k ∈ GLn (O).

Remark 3.14. One can show that if π is a generic irreducible unitary representation of
GLn (F ), then the sets Cj can be chosen, such that for every χ ∈ Cj, < (χ) > 0. [JS90,
Section 4, Proposition 3]

3.2. Convergence. Before proving that Jπ,ψ converges absolutely for s in a right half plane,
we prove some statements used throughout the proof.
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3.2.1. Theorems regarding the diagonal part of an Iwasawa decomposition of uZ. We will
need the following theorem regarding the diagonal part of the Iwasawa decomposition of
some matrix.
We follow [JS90, Section 5, Propositions 4, 5].

Theorem 3.15. Let Z ∈Mm (F ) be a lower triangular nilpotent matrix and uZ = wm,m
(
Im Z

Im

)
w−1
m,m.

Suppose uZ = nZtZkZ is an Iwasawa decomposition of uZ (i.e. nZ ∈ N2m, tZ ∈ A2m,
kZ ∈ K2m). Write tZ = diag (t1, . . . , t2m). Then |ti| ≥ 1 for odd i and |ti| ≤ 1 for even i.
Furthermore |t1| = |t2m| = 1.

Before proving this theorem, we discuss some properties of the maximum norm of the
exterior power of the space spanned by row elements (ei)

n
i=1.

Let V be a �nite dimensional vector space over F . Let {v1, . . . , vd} be a basis for V . For
every 1 ≤ r ≤ d, we de�ne a norm on Λr (V ), the r-th exterior power of V , by

∥∥∥∥∥
∑

1≤i1<···<ir≤d
ai1i2...irvi1 ∧ · · · ∧ vir

∥∥∥∥∥ = max
1≤i1<···<ir≤d

|ai1i2...ir | .

Remark 3.16. Note that for v ∈ V , v =
∑d

i=1 bivi we have ‖v‖ = max1≤i≤d |bi| (here r = 1).

Claim 3.17. This norm has the property that for every 1 ≤ r ≤ d−1, α ∈ V r (V ) and v ∈ V ,
the following inequality holds:

‖v ∧ α‖ ≤ ‖v‖ ‖α‖ .

Proof. Write v =
∑d

j=1 bjvj and α =
∑

1≤i1<···<ir≤d ai1i2...irvi1∧· · ·∧vir , where ai1i2...ir , bj ∈ F .
Then

v ∧ α =
d∑

j=1

∑

1≤i1<···<ir≤d
bjai1i2...irvj ∧ vi1 ∧ · · · ∧ vir .

We get that the coe�cients of v ∧ α are sums of the form
∑

(−1)s bjai1i2...ir . These have
absolute value∣∣∣

∑
(−1)s bjai1i2...ir

∣∣∣ ≤ max
j /∈{i1,...,ir}

|bj| |ai1...ir | ≤ max
1≤j≤d

|bj| max
1≤i1<···<ir≤d

|ai1...ir | = ‖v‖ · ‖α‖ ,

and therefore the norm of v ∧ α, which is the maximal absolute value of the coe�cients of
v ∧ α, is not greater than ‖v‖ · ‖α‖. �
We now take V to be the space spanned by the row vectors (ei)

n
i=1 ⊆ F 1×n.

Proposition 3.18. For a matrix k ∈ Kn = GLn (O) and 1 ≤ r ≤ n, we have

‖(erk) ∧ (er+1k) ∧ · · · ∧ (enk)‖ = 1.

Proof. All matrix elements of k are in O and therefore have absolute value ≤ 1. Hence
‖eik‖ ≤ 1. By using the inequality ‖v ∧ α‖ ≤ ‖v‖ ‖α‖ repeatedly, one gets

‖(erk) ∧ (er+1k) ∧ · · · ∧ (enk)‖ ≤ ‖erk‖︸ ︷︷ ︸
≤1

‖(er+1k) ∧ · · · ∧ (enk)‖

≤ ‖(er+1k) ∧ · · · ∧ (enk)‖ ≤ · · · ≤ ‖enk‖ ≤ 1.
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On the other hand

(e1k) ∧ · · · ∧ (enk) = det k · (e1 ∧ · · · ∧ en) ,

and therefore

‖(e1k) ∧ · · · ∧ (enk)‖ = |det k| · ‖e1 ∧ · · · ∧ en‖ = 1,

which implies

1 = ‖(e1k) ∧ · · · ∧ (enk)‖ ≤ ‖(e2k) ∧ · · · ∧ (enk)‖ ≤ · · · ≤ ‖(erk) ∧ · · · ∧ (enk)‖ ,
and we get the desired equality ‖(erk) ∧ · · · ∧ (enk)‖ = 1. �
Corollary 3.19. For every k ∈ Kn and every 1 ≤ i ≤ n, we have ‖eik‖ = 1.

Proof. We have seen already that 1 = ‖(e1k) ∧ · · · ∧ (enk)‖. On the other hand, as in the
previous proof

1 = ‖(e1k) ∧ · · · ∧ (enk)‖ ≤ ‖e1k‖ · · · · · ‖enk‖ ≤ 1,

hence
‖e1k‖ · · · · · ‖enk‖ = 1.

Combining this with the fact that ‖eik‖ ≤ 1, for all 1 ≤ i ≤ n (since the entries of k are in
O), implies ‖eik‖ = 1, for all 1 ≤ i ≤ n. �
Proposition 3.20. Let uZ = nZtZkZ where nZ ∈ Nn tZ = diag (t1, . . . , tn) ∈ An, kZ ∈ Kn

and let 1 ≤ r ≤ n. Then ‖(eruZ) ∧ · · · ∧ (enuZ)‖ = |trtr+1 · · · · · tn|.
Proof. Write

(eruZ) ∧ · · · ∧ (enuZ) = (ernZtZkZ) ∧ · · · ∧ (ennZtZkZ) .

Denote TnZ , TtZ , TkZ : V → V the maps TnZ (v) = vnZ , TtZ (v) = vtZ , TkZ (v) = vkZ . Then
the above wedge product equals

(ernZtZkZ) ∧ · · · ∧ (ennZtZkZ) = (TkZTtZTnZer) ∧ · · · ∧ (TkZTtZTnZen)

= Λn−r+1TkZΛn−r+1TtZ ((TnZer) ∧ · · · ∧ (TnZen)) .

We notice that the subspace Vr spanned by {er, . . . , en} is invariant under TnZ . The matrix
of TnZ �Vr , with respect to the basis {er, . . . , en}, is the transpose of the sub-matrix of nZ
consisting of its last n− r + 1 rows and columns. Therefore the restriction of TnZ to Vr has
determinant 1 and we have

(TnZer) ∧ · · · ∧ (TnZen) = detTnZ �Vr · (er ∧ · · · ∧ en) = er ∧ · · · ∧ en.
Thus

Λn−r+1TkZΛn−r+1TtZ ((TnZer) ∧ · · · ∧ (TnZen)) = Λn−r+1TkZΛn−r+1TtZ (er ∧ · · · ∧ en) .

Since TtZei = eitZ = tiei and Λn−r+1TkZ (er ∧ · · · ∧ en) = (erkZ) ∧ · · · ∧ (enkZ), we get

Λn−r+1TkZΛn−r+1TtZ (er ∧ · · · ∧ en) = trtr+1 · · · · · tn · ((erkZ) ∧ · · · ∧ (enkZ)) .

Taking ‖·‖, we get
‖(eruZ) ∧ · · · ∧ (enuZ)‖ = |trtr+1 · · · · · tn| ‖(erkZ) ∧ · · · ∧ (enkZ)‖ = |trtr+1 · · · · · tn| ,

where the last step uses the previous proposition. �
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We now move to the proof of Theorem 3.15.

Proof. We �rst write the form of the matrix uZ = wm,m
(
Im Z

Im

)
w−1
m,m where Z ∈ Mm (F )

is a lower triangular nilpotent matrix. We recall that for an arbitrary (aij)i,j we have

wm,m (aij)w
−1
m,m =

(
aσ−1(i)σ−1(j)

)
i,j

where σ is the permutation

σ =

(
1 2 3 . . . m m+ 1 m+ 2 m+ 3 . . . 2m
1 3 5 . . . 2m− 1 2 4 6 . . . 2m

)

The diagonal of
(
Im Z

Im

)
consists of the diagonal of the identity matrix I2m. It is preserved

under conjugation. We compute which non-diagonal entries of uZ can be non-zero. These
are elements having index (i, j), with (σ−1 (i) , σ−1 (j)) = (i′,m+ j′), with 1 ≤ i′ ≤ m and
1 ≤ j′ ≤ m and i′ > j′, i.e. i = σ (i′) = 2i′−1, j = 2j′. We notice that i > j, since i′ ≥ j′+1,
i.e. uZ is a lower triangular unipotent matrix. We also get that uZ has the row vector ei
as its i-th row for even i. Similarly, uZ has the column vector eti as its i-th column for odd
i. We illustrate the shape of uZ by writing it for m = 4: (The matrix has zeros above its
diagonal)

uZ =




1
0 1
0 ∗ 1
0 0 0 1
0 ∗ 0 ∗ 1
0 0 0 0 0 1
0 ∗ 0 ∗ 0 ∗ 1
0 0 0 0 0 0 0 1




.

We have shown that uZei = ei for even i. By the previous claim, we have that for even i

‖(eiuZ) ∧ · · · ∧ (e2muZ)‖ = |titi+1 · · · · · t2m|
‖ei ∧ (ei+1uZ) ∧ · · · ∧ (e2muZ)‖ = |titi+1 · · · · · t2m| .

From the inequality ‖v ∧ α‖ ≤ ‖v‖ ‖α‖, we get
‖ei ∧ (ei+1uZ) ∧ · · · ∧ (e2muZ)‖ ≤ ‖(ei+1uZ) ∧ · · · ∧ (e2muZ)‖ = |ti+1 · · · · · t2m| ,

and hence |ti| ≤ 1, and the theorem is proved for even i.
In order to prove the theorem for odd i, we write uZ = nZtZkZ and therefore

kZ = t−1
Z n−1

Z uZ .

For odd i, we have seen that the ith column of uZ is the column eti, which implies that the
ith column of n−1

Z uZ is the same as the ith column of n−1
Z . This implies that for odd i, kZ =

t−1
Z n−1

Z uZ has the value t−1
i in the i-th place on the diagonal. Since kZ ∈ K2m = GL2m (O),

we get for odd i,
∣∣t−1
i

∣∣ ≤ 1, i.e. |ti| ≥ 1, as required.
As for t1 and t2m: since e2m = e2muZ = e2mnZtZkZ = t2me2mkZ we have

1 = ‖e2m‖ = ‖t2me2mkZ‖ = |t2m| ‖e2mkZ‖ = |t2m| ‖e2m‖ = |t2m| .
Regarding t1, write kZe

t
1 = t−1

Z n−1
Z uZe

t
1 = t−1

Z et1 = t−1
1 et1, and therefore e1k

t
Z = t−1

1 e1. And
since ktZ ∈ K2m, this implies

1 = ‖e1‖ =
∥∥e1k

t
Z

∥∥ =
∥∥t−1

1 e1

∥∥ =
∣∣t−1

1

∣∣ ‖e1‖ = |t1|−1 ,
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as required. �
Proposition 3.21. Let Z ∈ Mm (F ) be a lower triangular nilpotent matrix and uZ =
wm,m

(
Im Z

Im

)
w−1
m,m. Suppose uZ = nZtZkZ is an Iwasawa decomposition of uZ (i.e. nZ ∈

N2m, tZ ∈ A2m, kZ ∈ K2m). Write tZ = diag (t1, . . . , t2m). Denote by ‖Z‖ the maximum
norm of Z. Then

max (1, ‖Z‖) 1
2m ≤

∏

1≤i≤2m
i is odd

|ti| .

Proof. Denote for 1 ≤ k ≤ 2m, sk = ‖(ekuZ) ∧ · · · ∧ (e2muZ)‖. By Proposition 3.20, sk =
|tk · · · · · t2m|. The element (ekuZ) ∧ · · · ∧ (e2muZ) is equal to the sum

(ekuZ) ∧ · · · ∧ (e2muZ) =
∑

i1<···<i2m−k+1

ai1...i2m−k+1
ei1 ∧ ei2 ∧ · · · ∧ ei2m−k+1

.

By writing eiuZ as a linear combination of {ei, . . . , e2m} using the coe�cients of uZ , we see
that the coe�cient ai1...i2m−k+1

equals to the minor of uZ consisting of the last 2m − k + 1
rows and the columns i1, . . . , i2m−k+1 columns. Because of the special shape of uZ , we see
that every non zero element of uZ is such a minor with k odd: we take for an element at the
kth row its column, and the last n− k columns of the matrix - this gives a lower triangular
matrix with a diagonal consisting only of 1 and our element, and therefore its determinant
value is equal to our element.
Therefore, we get that for all k, ‖(ekuZ) ∧ · · · ∧ (e2muZ)‖ ≥ ‖ekuZ‖ ≥ 1 and

∏

1≤k≤2m

‖(ekuZ) ∧ · · · ∧ (e2muZ)‖ ≥ max
1≤k≤2m

|uZek| = ‖uZ‖ .

Since uZ consists of the same non-zero elements as Z, except for 1 on the diagonal, we have
‖uZ‖ = max {1, ‖Z‖}, and we get

∏

1≤k≤2m

sk ≥max {1, ‖Z‖} .

From the previous theorem, we have

sk = |tk · · · · · t2m| ≤
∏

1≤j≤2m
j is odd

|tj| .

Therefore, we get

max {1, ‖Z‖} ≤




∏

1≤j≤2m
j is odd

|tj|




2m

,

as required. �
Proposition 3.22. We can choose smooth functions Z 7→ nZ, Z 7→ tZ and a continuous
function Z 7→ kZ from Mm (F ) to N2m, A2m, K2m respectively, such that nZtZkZ = uZ is an
Iwasawa decomposition of uZ, for every Z ∈ Mm (F ). Furthermore, one can choose these,
such that tZ ∈ A2m−1 (i.e. tZ = diag (t1, t2, . . . , t2m−1, 1)).
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Proof. The cosets of Mm(F )/Mm(O) form a cover of Mm (F ) of pairwise disjoint compact-open
subsets. We choose a representative for each coset such that

Mm (F ) =
⋃
·
i∈I

(Zi +Mm (O)) .

Let uZi = niaiki (where ni ∈ N2m, ai ∈ A2m, ki ∈ K2m). Then for N ∈Mm (O) we have

uZi+N = wm,m

(
Im Zi

Im

)(
Im N

Im

)
w−1
m,m

= uZi · uN .
Since N ∈ Mm (O), we have that uN = wm,m

(
Im N

Im

)
w−1
m,m ∈ K2m, and therefore uZi+N =

niai (kiuN) is an Iwasawa decomposition.
We de�ne for every N ∈Mm (O) and i ∈ I, nZi+N = ni, tZi+N = ai, kZi+N = kiuN . Since

Zi +Mm (O) is compact open, it is clear that we have constructed functions as required.
Regarding the last part - write tZ = diag (t1, . . . , t2m). By Theorem 3.15, |t2m| = 1 and

therefore by replacing kZ with diag (1, 1, . . . , 1, t2m) ·kZ and tZ with tZ ·diag
(
1, 1, . . . , 1, t−1

2m

)
,

we get an Iwasawa decomposition with tZ ∈ A2m−1. It is clear that tZ is still smooth after
this modi�cation. �

3.2.2. Convergence proof. We now prove a theorem regarding the convergence of the integral.
We follow [JS90, Section 7, Proposition 1].

Theorem 3.23. Let π be an irreducible generic representation of GL2m (F ). There exists
a real number rπ,∧2 ∈ R such that the integral Jπ,ψ (z,W, φ) converges absolutely for every
z ∈ C with Re (z) > rπ,∧2, W ∈ W (π, ψ) and φ ∈ S (Fm).

Proof. We can assume that π has a unitary central character: Suppose that the theorem has
been proved for representations with a unitary character. We can write for a ∈ F ∗, ωπ (a) =

χ (a) · |a|r where χ is unitary and r = < (ωπ) ∈ R. Then τ = π · det−
r

2m has χ as its central
character and therefore τ has a unitary central character. Note that Jτ,ψ

(
z + r

m
,W, φ

)
=

Jπ,ψ (z,W, φ) and therefore Jπ,ψ (z,W, φ) converges for every z with Re (z) > rτ,∧2 − r
m
.

We suppose that π has a unitary central character. Denote s = Re (z). Using the Iwasawa
decomposition Gm = NAK where N = Nm the unipotent matrix subgroup, A = Am the
diagonal matrix subgroup and K = Km = GLm (O), we write (see also Subsection 3.1.2)

∫

N\G

(∫

B\M

∣∣∣∣W
(
wm,m

(
Im X

Im

)(
g

g

))∣∣∣∣ |ψ (−tr (X))| dX
)
|φ (εg)| |det g|s dg

=

∫

A

da

∫

K

dk

(
δ−1
B (a)

∫

B\M

∣∣∣∣W
(
wm,m

(
Im X

Im

)(
ak

ak

))∣∣∣∣ dX
)
|φ (εak)| |det (ak)|s ,

where B = Bm = NmAm = AmNm is the upper triangular matrix subgroup of Gm.

Conjugating by

(
a

a

)
and identifying B\M with lower triangular nilpotent subgroup of

M , which we denote N−, the integral gets the form
∫

A

da

∫

K

dk

∫

N−
dX

(
δ−1
B (a)

∣∣∣∣W
(
wm,m

(
a

a

)(
Im a−1Xa

Im

)(
k

k

))∣∣∣∣
)
|φ (εak)| |det (a)|s .
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We write a = diag (a1, . . . , am) = amIm · diag
(
a1
am
, a2
am
, . . . , am−1

am
, 1
)
and denote

a′ = diag

(
a1

am
,
a2

am
, . . . ,

am−1

am
, 1

)
.

Then

W

(
wm,m

(
a

a

)(
Im a−1Xa

Im

)(
k

k

))
= ωπ (am)W

(
wm,m ·

(
a′

a′

)
·
(
Im a−1Xa

Im

)(
k

k

))
.

Since ωπ is unitary, |ωπ (am)| = 1. Using the following measure decomposition of A:
dµAm (a′am) = dµAm−1 (a′) dµF ∗ (am) (where we think of Am−1 ⊆ Am by the embedding
diag (a1, . . . , am−1) 7→ diag (a1, , . . . , am−1, 1)), we get

∫

Am−1

da′
∫

F ∗
dam

∫

K

dk

∫

N−
dX

(
δ−1
B (a′)

∣∣∣∣W
(
wm,m

(
a′

a′

)(
Im a′−1Xa′

Im

)(
k

k

))∣∣∣∣
)

· |φ (εamk)| |det (a′)|s |am|ms .
By Fubini's theorem, it is enough to show that the following integral (obtained by exchanging
order of integration) converges in a right half plane

∫

Am−1

da′
∫

K

dk

∫

N−
dX

(
δ−1
B (a′)

∣∣∣∣W
(
wm,m

(
a′

a′

)(
Im a′−1Xa′

Im

)(
k

k

))∣∣∣∣
)
|det (a′)|s

(3.1)

·
∫

F ∗
|φ (εamk)| |am|ms dam.

We notice that for a �xed k ∈ K,
∫
F ∗ |φ (εamk)| |am|ms dam is a local zeta integral of Tate

(see Theorem 3.3) and therefore converges absolutely for Re (s) > 0. We claim that this
integral is uniformly bounded on K: Since φ is a Schwartz function, its support is open and
compact and therefore the set

suppφ ·K = {x · k | x ∈ suppφ, k ∈ K}
is compact, as an image of a compact set (suppφ×K) under a continuous map. This set is
also open, using the fact that suppφ is open and that multiplication by an invertible matrix
is a homeomorphism. Therefore the indicator function 1χsuppφ·K is a Schwartz function.
Since φ is a Schwartz function, it is bounded, i.e. there existsM > 0 such that |φ (x)| ≤M ,

for every x ∈ Fm.
It is clear that |φ (x)| ≤M · 1χsuppφ·K (x), for every x ∈ Fm, and therefore

∫

F ∗
|φ (εamk)| |am|ms dam ≤M ·

∫

F ∗
1χsuppφ·K (εamk) |am|ms dam = M ·

∫

F ∗
1χsuppφ·K (εam) |am|ms dam.

The right hand side converges for every s ∈ C with Re (s) > 0 as a local zeta integral of
Tate (see Theorem 3.3). The right hand side also does not depend on k ∈ K and therefore∫
F ∗ |φ (εamk)| |am|ms dam is uniformly bounded for k ∈ K, i.e. for every k ∈ K, we have∫
F ∗ |φ (εamk)| |am|ms dam ≤ C (φ, s), where C (φ, s) is a positive constant depending on φ
and s only.
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We are left with the integral
∫

Am−1

da′
∫

K

dk

∫

N−
dX

(
δ−1
B (a′)

∣∣∣∣W
(
wm,m

(
a′

a′

)(
Im a′−1Xa′

Im

)(
k

k

))∣∣∣∣
)
|det (a′)|s .

We substitute a′−1Xa′ = Z, dX = δ−1
B (a′) dZ

∫

Am−1

da′
∫

K

dk

∫

N−
dZ

(
δ−2
B (a′)

∣∣∣∣W
(
wm,m

(
a′

a′

)(
Im Z

Im

)(
k

k

))∣∣∣∣
)
|det (a′)|s .

We denote the entries of a′ = diag
(
a′1, a

′
2, . . . , a

′
m−1, 1

)
. We compute

wm,m

(
a′

a′

)
w−1
m,m = wm,mdiag

(
a′1, a

′
2, . . . , a

′
m−1, 1, a

′
1, a
′
2, . . . , a

′
m−1, 1

)
w−1
m,m

For 1 ≤ i ≤ m, we have that the i, i + m diagonal elements of
(
a′
a′
)
, which have value a′i

for i 6= m and the value 1 for i = m, move after conjugation to σ (i) = 2i− 1, σ (i+m) = 2i.
i.e. we get the following matrix which we denote b

b = wm,m

(
a′

a′

)
w−1
m,m = diag

(
a′1, a

′
1, a
′
2, a
′
2, . . . , a

′
m−1, a

′
m−1, 1, 1

)
.

We denote wm,m
(
Im Z

Im

)
w−1
m,m = uZ . We use the Iwasawa decomposition for the element

uZ : uZ = nZtZkZ where nZ ∈ N2m, tZ ∈ A2m−1, kZ ∈ K2m, and nZ , tZ are smooth in Z (see
Proposition 3.22). Since bnZb

−1 ∈ N2m, the last integral is equal to

∫

Am−1

da′
∫

K

dk

∫

N−
dZ


δ−2

B (a′)
∣∣ψ
(
bnZb

−1
)∣∣

︸ ︷︷ ︸
=1

∣∣∣∣W
(
btZkZwm,m

(
k

k

))∣∣∣∣


 |det (a′)|s .

We now recall the asymptotic expansion of Whittaker functions (see Proposition 3.13).
There exists a �nite set of the form X = X(Ci,ri)

2m−1
i=1

such that for everyW ∈ W (π, ψ), there

exist Schwartz functions (φξ)ξ∈X ⊆ S (F 2m−1 ×GL2m (O)) such that

W (ak) = δ
1
2
B2m−1

(a) ·
∑

ξ∈X
ξ (a1, . . . , a2m−1)φξ (a1, . . . , a2m−1, k) ,

for a = m (a1, . . . , a2m−1) and k ∈ GL2m (O).
Denote tZ = diag (t1, . . . , t2m), b = diag (b1, . . . , b2m) = diag

(
a′1, a

′
1, a
′
2, a
′
2, . . . , a

′
m−1, a

′
m−1, 1, 1

)
,

btZ = m (c1, . . . , c2m−1), where ci = biti
bi+1ti+1

.

Since a Schwartz function on a product of groups is the sum of products of Schwartz func-

tions on each group, we can write φξ (a1, . . . , a2m−1, k) =
∑M

i=1

(∏2m−1
j=1 φi,jξ (aj)

)
φi,Kξ (k),

where φi,jξ ∈ S (F ) and φi,Kξ ∈ S (GL2m (O)). Therefore, it su�ces to consider the conver-
gence of ∫

Am−1

da′
∫

K

dk

∫

N−
|det (a′)|s dZδ−2

B (a′) δ
1
2
B2m−1

(btZ) ·

·
∣∣∣∣∣
∑

ξ∈X

M∑

i=1

ξ (c1, . . . , c2m−1)

(
2m−1∏

j=1

φi,jξ (cj)

)
φi,Kξ

(
kZwm,m

(
k

k

))∣∣∣∣∣ .
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Using the triangle inequality, it su�ces to show that an integral of the following form con-
verges:

∫

Am−1

da′
∫

K

dk

∫

N−
dZ |det (a′)|s dZδ−2

B (a′) δ
1
2
B2m−1

(btZ) ·

· |ξ (c1, . . . , c2m−1)|
2m−1∏

j=1

∣∣φj (cj)
∣∣
∣∣∣∣φK

(
kZwm,m

(
k

k

))∣∣∣∣ ,

for all W ∈ W (π, ψ), ξ ∈ X, φj ∈ S (F ), φK ∈ S (GL2m (O)).
First note that since φK is a Schwartz function it is bounded, and since K is a compact

set, our integral is bounded from above by

M

∫

Am−1

da′
∫

N−
dZ |det (a′)|s dZδ−2

B (a′) δ
1
2
B2m−1

(btZ) |ξ (c1, . . . , c2m−1)|
2m−1∏

j=1

∣∣φj (cj)
∣∣ ,

for a positive constant M . Therefore, it su�ces to show that this integral converges.
In order to proceed we use the following relation between δB2m−1 and δBm

δ
1
2
B2m−1

(b) · δ−2
Bm

(a′) =
∏

1≤i≤m−1

|a′i|−1
= |det a′|−1

.

Thus it su�ces to show that the following integral is �nite
∫

N−
dZ

∫

Am−1

da′
(
δ

1
2
B2m−1

(tZ) · |ξ (c1, . . . , c2m−1)|
2m−1∏

j=1

∣∣φj (cj)
∣∣ |det (a′)|s−1

)
.

Since b2i−1 = b2i = a′i, we have c2i−1 = t2i−1

t2i
, c2i =

a′i
a′i+1

t2i
t2i+1

.

We substitute a′′i =
∏m−1

j=i

(
t2j · t−1

2j+1

)
· a′i, where a′′i ∈ F×, to get c2i =

a′′i
a′′i+1

, det (a′) =

det (a′′) ·∏m−1
j=1

∣∣∣ t2j+1

t2j

∣∣∣
j

.

We also write ξ (c1, . . . , c2m−1) =
∏2m−1

j=1 χj (cj) logkj |cj|, where χj : F ∗ → C∗ are charac-
ters, and 0 ≤ kj ∈ Z, and therefore we are left with the integral

∫

N−
dZ

∫

Am−1

da′′
(
δ

1
2
B2m−1

(tZ)
m∏

j=1

∣∣∣∣
t2j−1

t2j

∣∣∣∣
<(χ2j−1) ∣∣∣∣φ2j−1

(
t2j−1

t2j

)∣∣∣∣
∣∣∣∣logk2j−1

∣∣∣∣
t2j−1

t2j

∣∣∣∣
∣∣∣∣ ·

m−1∏

j=1

∣∣∣∣
t2j+1

t2j

∣∣∣∣
j(s−1)

)
·

·
m−1∏

j=1

∣∣∣∣φ2j

(
a′′j
a′′j+1

)∣∣∣∣
∣∣∣∣
a′′j
a′′j+1

∣∣∣∣
<(χ2j) ∣∣∣∣logk2j

∣∣∣∣
a′′j
a′′j+1

∣∣∣∣
∣∣∣∣ |det (a′′)|s−1

.

By Fubini's theorem, it su�ces to show that the following integrals converge
∫

N−
δ

1
2
B2m−1

(tZ)
m∏

j=1

∣∣∣∣
t2j−1

t2j

∣∣∣∣
<(χ2j−1) ∣∣∣∣φ2j−1

(
t2j−1

t2j

)∣∣∣∣
∣∣∣∣logk2j−1

∣∣∣∣
t2j−1

t2j

∣∣∣∣
∣∣∣∣ ·

m−1∏

j=1

∣∣∣∣
t2j+1

t2j

∣∣∣∣
j(s−1)

dZ,

∫

Am−1

m−1∏

j=1

∣∣∣∣φ2j

(
a′′j
a′′j+1

)∣∣∣∣
∣∣∣∣
a′′j
a′′j+1

∣∣∣∣
<(χ2j) ∣∣∣∣logk2j

∣∣∣∣
a′′j
a′′j+1

∣∣∣∣
∣∣∣∣ |det (a′′)|s−1

da′′.
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Regarding the �rst integral, Denote Φ1 (x1, . . . , xm) =
∏m

j=1 |φ2j−1 (xj)|. Φ1 has a com-

pact support and therefore there exists R > 1 such that if
∣∣∣ t2i−1

t2i

∣∣∣ > R for some i, then

Φ1

(
t1
t2
, t3
t4
, . . . , tn−1

tn

)
= 0.

Consider the function µs : (F ∗)2m → C∗ de�ned as

µs (u1, . . . , u2m) =
∏

1≤i<j≤2m−1

∣∣∣∣
uj
ui

∣∣∣∣
1
2

·
m−1∏

j=1

∣∣∣∣
u2j+1

u2j

∣∣∣∣
j(s−1)

·
m∏

j=1

∣∣∣∣
u2j−1

u2j

∣∣∣∣
<(χ2j−1) ∣∣∣∣logk2j−1

∣∣∣∣
u2j−1

u2j

∣∣∣∣
∣∣∣∣ .

This function is smooth as a product of such. It is therefore bounded on the compact set{
(u1, . . . , u2m) | 1

R
≤ |ui| ≤ R

}
, i.e. there exists M1 > 0, such that µs (u1, . . . , u2m) ≤ M1,

whenever 1
R
≤ |ui| ≤ R, for every 1 ≤ i ≤ n.

Φ1 is a Schwartz function and therefore it is bounded, i.e. there exists M2 > 0, such that
Φ1 (x) ≤M2, for every x ∈ Fm. We now claim that for every Z ∈ N− we have the inequality

Φ1

(
t1
t2
,
t3
t4
, . . . ,

t2m−1

t2m

)
µs (t1, . . . , t2m) ≤M1M2 · 1χ{Z′|‖Z′‖≤R2m2} (Z) .

If
∣∣∣ t2i−1

t2i

∣∣∣ > R for some i then we have 0 on the left hand side and therefore the inequality is

trivial.
If for every 1 ≤ i ≤ m,

∣∣∣ t2i−1

t2i

∣∣∣ ≤ R then, by Theorem 3.15, 1 ≤ |t2i−1| ≤ R |t2i| ≤ R and

therefore 1
R
≤ |t2i| ≤ 1. From the inequality max (1, ‖Z‖) 1

2m ≤ ∏1≤k≤2m
k is odd

|tk| (Proposition
3.21), we have ‖Z‖ ≤ R2m2

. Therefore 1χ{Z′|‖Z′‖≤R2m2} (Z) = 1. Since we have that
1
R
≤ |t2i| , |t2i−1| ≤ R, we have µs (t1, t2, . . . , t2m−1) ≤ M1, and since Φ1 (x) ≤ M2, for

every x ∈ Fm, we have

Φ1

(
t1
t2
,
t3
t4
, . . . ,

t2m−1

t2m

)
µs (t1, . . . , t2m) ≤M1M2 = M1M2 · 1χ{Z′|‖Z′‖≤R2m2} (Z) .

Since N− ⊆Mm (F ) is closed, the set
{
Z ′ ∈ N− | ‖Z ′‖ ≤ R2m2

}
is compact as an intersec-

tion of a closed subset and a compact subset of Mm (F ), and therefore
∫

N−
Φ1

(
t1
t2
,
t3
t4
, . . . ,

t2m−1

t2m

)
µs (t1, . . . , t2m) dZ ≤M1M2

∫

N−
1χ{Z′|‖Z′‖≤R2m2} (Z) dZ,

and the right hand side is �nite.
Regarding the second integral, substituting a′′i =

∏m−1
j=i a

′′′
j yields

(3.2)

∫

Am−1

m−1∏

j=1

∣∣φ2j
(
a′′′j
)∣∣ ∣∣logk2j

∣∣a′′′j
∣∣∣∣ ∣∣a′′′j

∣∣<(χ2j)+j(s−1)
da′′′.

This integral converges as a multiple local zeta integral of Tate (see Theorem 3.3) for s, such

that < (χ2j) + j (s− 1) > 0, for every j, i.e. s > max
(

1− <(χ2j)

j

)m−1

j=1
.

To conclude, we get that Jπ,ψ (z,W, φ) converges, for every z with Re (z) > rπ,∧2 where

rπ,∧2 = max

(
{0} ∪

{
1− < (χ)

j
| 1 ≤ j ≤ m− 1 | χ ∈ C2j

})
.
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This constant depends on the representation π only. �
Remark 3.24. Using Remark 3.14, we get that if π is unitary, then < (χ) > 0, for every
χ ∈ Cj for every j, and therefore 0 < rπ,∧2 < 1.

Remark 3.25. When π is unitary and supercuspidal, we have thatW (ak) = f (a1, . . . , a2m−1, k)
for f ∈ S

(
(F ∗)2m−1 ×GL2m (O)

)
, and a = m (a1, . . . , a2m−1), k ∈ GL2m (O). This implies

that the Schwartz functions φ2j can be chosen to vanish at zero, and therefore the multiple
Tate integral (3.2) converges for any s. The only integral to consider in this case is (3.1),
which converges for s > 0. Moreover, if π is supercuspidal (not necessarily unitary), and if
φ (0) = 0, then (3.1) converges for all s. We obtain by using the same arguments as in the
beginning of the proof the following corollary:

Corollary 3.26. If π is supercuspidal, then Jπ,ψ (s,W, φ) converges absolutely, for every

Re (s) > −<(ωπ)
m

, W ∈ W (π, ψ), φ ∈ S (Fm). Furthermore if φ (0) = 0, then Jπ,ψ (s,W, φ)
converges absolutely, for every s ∈ C and W ∈ W (π, ψ).

Remark 3.27. Following the steps of the proof and using the observations of the previous
remark we also get the following proposition:

Proposition 3.28. If π is supercuspidal (not necessarily unitary), then for every s ∈ C, the
integral
∫

Am−1

da′
∫

K

dk

∫

B\M
dX

(
δ−1
B (a′)W

(
wm,m

(
Im X

Im

)(
a′k

a′k

))
ψ (−trX)

)
|det (a′)|s

converges absolutely.

3.3. Non-vanishing. Let π be an irreducible unitary generic representation of GL2m (F )
and let rπ,∧2 ∈ R such that Jπ,ψ (s,W, φ) converges for every W ∈ W (π, ψ), φ ∈ S (Fm) and
s ∈ C with Re (s) > rπ,∧2 (See Theorem 3.23). In this subsection we show that for every
s ∈ C with Re (s) > rπ,∧2 , the bilinear map (W,φ) 7→ Jπ,ψ (s,W, φ) isn't the zero map.
We begin with a recursive expression for the Haar measure on the quotient space Nn\GLn(F ).

3.3.1. A recursive expression for the Haar measure on Nn\Gn. We give an expression for the
Haar measure on Nn\Gn using the Haar measure on Nn−1\Gn−1 , where Gn = GLn (F ). Here
K = GLn (O) and Z = Z (Gn) is the center of Gn. The proofs are omitted.

Proposition 3.29. For a smooth f : Nn\Gn → C, the following holds
∫

Nn\Gn
f (g) dg =

∫

Nn−1
\Gn−1

∫

Z

∫

K

1

|det g|f
((

g
1

)
zk

)
dkdzdg.

Let νn : Gn → Nn\Gn be the quotient map. We give another expression for the previous
integral in the special case where suppf ⊆ νn (Pn ·Kr) where Kr ⊆ K is a congruence
subgroup, i.e. Kr = In +$rMn (O).

Proposition 3.30. Suppose that f : Nn\Gn → C is a smooth function and suppose that
suppf ⊆ νn (Pn ·Kr) where Kr ⊆ K. Then there exists a positive constant CKr > 0 (de-
pending on Kr only) such that

∫

Nn\Gn
f (g) dg = CKr

∫

Nn−1
\Gn−1

∫

Kr

1

|det g|f
((

g
1

)
k

)
dkdg.
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3.3.2. Proof of non-vanishing.

Theorem 3.31. There exist a Schwartz function φ ∈ S (Fm) and a Whittaker function
W ∈ W (π, ψ), such that Jπ,ψ (s,W, φ) = 1 for every s ∈ C with Re (s) > rπ,∧2.

We follow [JS90, Section 7, Proposition 3].

Proof. Let W be an arbitrary Whittaker function and let Km,W be a congruence subgroup
of K = GLm (O) such that W is invariant to right translations of elements of the form(
k0

k0

)
where k0 ∈ Km,W . Let φ : Fm → C be the indicator function of the set εm ·Km,W .

The set εm ·Km,W consists of the last row of elements of Km,W . εm ·Km,W is an open compact
set as Km,W is an open-compact subset of Mm (F ) and the projection maps X 7→ Xij are
continuous and open. Therefore φ is a Schwartz function on Fm. Since Pm is the stabilizer
of εm under the right action of Pm, it is clear that the integrand of Jπ,ψ (s,W, φ) has support
(in the variable g) which is contained in a subset of νm (PmKm,W ) (where νm : Gm → Nm\Gm
is the quotient map). By Proposition 3.30

Jπ,ψ (s,W, φ) = C ′m ·
∫

Nm−1
\Gm−1

∫

N−m
W


wm,m

(
Im X

Im

)



g 0
0 1

0m

0m
g 0
0 1





ψ (−tr (X))︸ ︷︷ ︸

=1

dX·

· |det g|s−1 dg,

where C ′m is a positive constant (which equals CKm,W · µKm,W (Km,W )).
Denote for 0 ≤ k ≤ m− 1

Ik (s,W ) =

∫

Nk
\Gk
|det g|s−1+2(k+1−m)

∫

N−k+1

W


wm,m




Ik+1 0 X 0
0 Im−k−1 0 0
0 0 Ik+1 0
0 0 0 Im−k−1







g 0
0 Im−k

0m

0m
g 0
0 Im−k





 dXdg.

Multiplying by a suitable constant, we get that Im−1 (s,W ) = Jπ,ψ (s,W, φ) for some Schwartz
function φ.
We give a recursive expression for Ik.

We �rst write X =

(
Z 0k×1

Y 0

)
where Z ∈ N−k is a lower triangular nilpotent k × k

matrix, and y ∈ F 1×k. The integral becomes∫

Nk
\Gk

dg

∫

N−k
dZ

∫

F 1×k
dY |det g|s−1+2(k+1−m)

·W



wm,m




Ik 0 0 Z 0 0
0 1 0 Y 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







g 0
0 Im−k

0m

0m
g 0
0 Im−k






.
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We conjugate by the matrix




g 0
0 Im−k

0m

0m
g 0
0 Im−k


 and substitute Y g = Y ′, dY ′ =

dY · |det g| to get

Ik (s,W ) =

∫

Nk
\Gk

dg

∫

N−k
dZ

∫

F 1×k
dY ′ |det g|s+2(k−m) W



wm,m




Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1




(3.3)

·




g 0
0 Im−k

0m

0m
g 0
0 Im−k







Ik 0 0 0 0 0
0 1 0 Y ′ 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1






.

For an arbitrary Whittaker function W ∈ W (π, ψ) and an arbitrary Schwartz function
Φ ∈ S

(
F k×1

)
, we de�ne Wk,Φ as the function

Wk,Φ (g) =

∫

Fk×1

W



g




Ik 0 0 0 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik u 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







Φ (u) du.(3.4)

Since Φ has compact support, this is an integral of a Schwartz function. It results in a
Whittaker function, as a linear combination of right translations of W .
We now compute Ik (s,W ′), where W ′ = Wk,Φ for arbitrary W ∈ W (π, ψ), and Φ ∈
S
(
F k×1

)
.

After substituting (3.4) in (3.3) and computing several conjugations, we get the following
expression for Ik (s,W ′):
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∫

Nk
\Gk

dg

∫

N−k
dZ

∫

F 1×k
dY

∫

Fk×1

du |det g|s+2(k−m) Φ (u)

·W



wm,m




Ik 0 0 0 Zgu 0
0 1 0 0 Y u 0
0 0 Im−k−1 0 0 0
0 0 0 Ik gu 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1




·




g 0
0 Im−k

0m

0m
g 0
0 Im−k







Ik 0 0 0 0 0
0 1 0 Y 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1






.

DenoteM =




Ik 0 0 0 Zgu 0
0 1 0 0 Y u 0
0 0 Im−k−1 0 0 0
0 0 0 Ik gu 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1



. We compute the conjugation wm,mMw−1

m,m.

As usual,
(
wm,mMw−1

m,m

)
ij

= Mσ−1(i),σ−1(j). The diagonal is preserved under conjugation,

and the only non-diagonal elements we need to consider are those with (σ−1 (i) , σ−1 (j)) =
(i′,m+ k + 1) where 1 ≤ i′ ≤ k + 1 or m+ 1 ≤ i′ ≤ m+ k i.e.

j = σ (m+ k + 1) = 2 (k + 1) ,

i =

{
2r − 1 i′ = r

2r i′ = r + k
,

where 1 ≤ r ≤ k + 1, and therefore i ≤ 2r ≤ 2 (k + 1) = j. Therefore, the conjugation is an
upper triangular unipotent matrix. The only possible non-zero element above its diagonal is
the element having j = i+1, i.e. 2 (k + 1) = i+1, i.e. i = 2k+1 = σ (k + 1) ⇐⇒ i′ = k+1.
Therefore this element is Mk+1,m+k+1 = Y u. Therefore, W

(
wm,mMw−1

m,mg
)

= ψ (Y u)W (g),
for any g ∈ GL2m (F ). Thus, the integration by u results in exchanging the function Φ (u)
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with its Fourier transform Φ̂ at the point Y , and we get the following expression for Ik (s,W ′):

∫

Nk
\Gk

dg

∫

N−k
dZ

∫

F 1×k
dY |det g|s+2(k−m) Φ̂ (Y )

·W



wm,m




Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







g 0
0 Im−k

0m

0m
g 0
0 Im−k







Ik 0 0 0 0 0
0 1 0 Y 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1






.

Since the Fourier transform is a bijection between the space of Schwartz function to itself,
we can choose Φ̂ to be any arbitrary Schwartz function. Let Φk,W be a Schwartz function

such that Φ̂k,W equals to the indicator function of an open compact subset Uk,W ⊆ F 1×k,
such that for every y ∈ Uk,W and g ∈ GL2m (F )

W



g




Ik 0 0 0 0 0
0 1 0 Y 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







= W (g) .

Therefore, we have

Ik
(
s,Wk,Φk,W

)
=C ·

∫

Nk
\Gk

dg

∫

N−k
dZ |det g|s+2(k−m) ·

·W



wm,m




Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







g 0
0 Im−k

0m

0m
g 0
0 Im−k






,(3.5)

where C = µF 1×k (Uk,W ) is a positive constant. We denote for an arbitrary Whittaker
function W ∈ W (π, ψ), W(k) = Wk,Φk,W and Ck (W ) = µF 1×k (Uk,W ) > 0, where Uk,W is an

arbitrary open compact set as above and Φ̂k,W = 1χUk .
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Next we de�ne for arbitrary W ∈ W (π, ψ) and Ψ ∈ S
(
F k×1

)
, W k,Ψ as the function

W k,Ψ (g) =

∫

Fk×1

W



g




Ik 0 0 0 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 u 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







Ψ (u) du.(3.6)

As before, this is a Whittaker function, as a �nite linear combination of right translations of
the Whittaker function W . We now compute Ik (s,W ′′) where W ′′ =

(
W k,Ψ

)
(k)
. After sub-

stituting (3.6) in (3.5) and computing several conjugations, we get the following expression
for Ik (s,W ′′):

Ck
(
W k,Ψ

)
·
∫

Nk
\Gk

dg

∫

N−k
dZ

∫

Fk×1

du |det g|s+2(k−m) Ψ (u)(3.7)

·W



wm,m




Ik Zgu 0 0 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 gu 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







g 0
0 Im−k

0m

0m
g 0
0 Im−k






.

We denoteM ′ =




Ik Zgu 0 0 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 gu 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1




and compute the conjugation wm,mM
′w−1

m,m.

We have
(
wm,mM

′w−1
m,m

)
i,j

= M ′
σ−1(i),σ−1(j). Again, the diagonal is preserved under con-

jugation. The only possible non-diagonal non-zero elements to consider are those with
σ−1 (j) = k + 1, σ−1 (i) = i′, where 1 ≤ i′ ≤ k or m+ 1 ≤ i′ ≤ m+ k, i.e.

j = σ (k + 1) = 2 (k + 1)− 1 = 2k + 1,

i =

{
σ (r) = 2r − 1 i′ = r

σ (r +m) = 2r i′ = m+ r
,

where 1 ≤ r ≤ k. Therefore i ≤ 2r ≤ 2k < 2k + 1 = j, which implies that wm,mM
′w−1

m,m

is an upper triangular unipotent matrix. We compute its elements above the diagonal: the
only possible non-zero element is the one having an index j = 2k + 1, i = j − 1 = 2k, and
therefore its value is M ′

σ−1(2k),σ−1(2k+1) = M ′
k+m,k+1, which equals the last component of gu,
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which is equal to εkgu (where εk ∈ F 1×k is the row vector having 1 in its kth position and 0
elsewhere). Therefore for every g ∈ GL2m (F ), we haveW

(
wm,mMw−1

m,mg
)

= ψ (εkgu)W (g).
Applying this to (3.7), results in omitting the integration by u in exchange of replacing Ψ
with its Fourier transform at the point εkg. We get the following expression for Ik (s,W ′′)

Ck
(
W k,Ψ

)
·
∫

Nk
\Gk

dg

∫

N−k
dZ

∫

Fk×1

du |det g|s+2(k−m) Ψ̂ (εkg)(3.8)

·W



wm,m




Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1







g 0
0 Im−k

0m

0m
g 0
0 Im−k






.

As before, since the Fourier transform is a bijection from the space of Schwartz functions
to itself, we can replace Ψ with any Schwartz function on F k. Let Kk,W be a congruence

subgroup of Gk such that W


g




k0 0
0 Im−k

0m

0m
k0 0
0 Im−k





 = W (g), for every g ∈ Gk

and k0 ∈ Kk,W . As before, the set εk ·Kk,W is an open compact subset of F 1×k. Let Ψk,W

be a Schwartz function, such that Ψ̂k,W = 1χεk·Kk,W . Since Pk is the stabilizer of εk with
respect to the right action of Gk, we have that integrand of Ik (s,W ′′) has support contained
in νk (PkKk,W ) (where νk : Gk → Nk\Gk is the quotient map). Denote W (k) = W k,Ψk,W .
Applying Proposition 3.30 to (3.8) we get that there exists a positive constant C ′k such that

Ik

(
s,
(
W (k)

)
(k)

)
= C ′k · Ck

(
W k,Ψ

)
·
∫

Nk−1
\Gk−1

dg

∫

N−k
dZ

∫

Fk×1

du |det g|s+2(k−m) Ψ (u)

·W



wm,m




Ik 0 0 Z 0 0
0 1 0 0 0 0
0 0 Im−k−1 0 0 0
0 0 0 Ik 0 0
0 0 0 0 1 0
0 0 0 0 0 Im−k−1






.

Therefore we proved that Ik

(
s,
(
W (k)

)
(k)

)
= C ′′k (W ) · Ik−1 (s,W ) where C ′′k (W ) is a

positive constant depending on W .
Note that I0 (s,W ) = W (wm,m). Since π is irreducible, there exists W ∈ W (π, ψ) with

W (wm,m) 6= 0, and by multiplication by a suitable constant, we can assume W (wm,m) = 1.

We de�ne a sequence of Whittaker functions (Wk)
m−1
k=0 byW0 ∈ W (π, ψ) withW0 (wm,m) = 1,

and Wk = 1
C′′k (Wk−1)

(
W

(k)
k−1

)
(k)
, for 1 ≤ k ≤ m. Then Ik (s,Wk) = Ik−1 (s,Wk−1), and

therefore Im−1 (s,Wm−1) = I0 (s,W0) = 1.
As seen in the beginning of the proof, one can choose a Schwartz function φm−1, such that

Jπ,ψ (s,Wm−1, φm−1) = Im−1 (s,Wm−1), and therefore Jπ,ψ (s,Wm−1, φm−1) = 1, for every
s ∈ C in the convergence domain. �

51



3.4. Rational function. In this subsection we show that in its convergence domain, Jπ,ψ (s,W, φ)
is a rational function in q−s, for �xed W ∈ W (π, ψ), φ ∈ S (Fm).

Theorem 3.32. For a �xed W ∈ W (π, ψ) and φ ∈ S (Fm), Jπ,ψ (s,W, φ) converges in its
convergence domain to an element of C (q−s). Furthermore, there exists a unique polynomial
p (z) ∈ C [z], with p (0) = 1, such that

Iπ,ψ = spanC {Jπ,ψ (s,W, φ) | W ∈ W (π, ψ) , φ ∈ S (Fm)} =
1

p (q−s)
C
[
qs, q−s

]
.

Proof. Following the steps and the notions of the proof of Theorem 3.23, we get that
Jπ.s (s,W, φ) equals the sum of integrals of the form

∫

F ∗
dam

∫

Am−1

da′′′
∫

N−
dZ

∫

K

dk ψ
(
bnZb

−1
)

δ
1
2
B2m−1

(tZ)
m∏

j=1

χ2j−1

(
t2j−1

t2j

)
φ2j−1

(
t2j−1

t2j

)
logk2j−1

∣∣∣∣
t2j−1

t2j

∣∣∣∣ ·
m−1∏

j=1

∣∣∣∣
t2j+1

t2j

∣∣∣∣
j(s−1)

·

m−1∏

j=1

φ2j
(
a′′′j
)
χ2j

(
a′′′j
) ∣∣a′′′j

∣∣j(s−1)
logk2j

∣∣a′′′j
∣∣ ·

φK
(
kZwm,m

(
k

k

))
φ (εamk) |am|ms ωπ (am) ,

for some (φi)
2m−1
i=1 ⊆ S (F ) and φK ∈ S (GL2m (O)). We denote

F (Z) = δ
1
2
B2m−1

(tZ)
m∏

j=1

χ2j−1

(
t2j−1

t2j

)
φ2j−1

(
t2j−1

t2j

)
logk2j−1

∣∣∣∣
t2j−1

t2j

∣∣∣∣ ·
m−1∏

j=1

∣∣∣∣
t2j+1

t2j

∣∣∣∣
j(s−1)

,

G (a′′′) =
m−1∏

j=1

φ2j
(
a′′′j
)
χ2j

(
a′′′j
) ∣∣a′′′j

∣∣j(s−1)
logk2j

∣∣a′′′j
∣∣ ,

H (am) = |am|ms ωπ (am) .

Then this integral can be written as
∫

F ∗
dam

∫

Am−1

da′′′
∫

N−
dZ

∫

K

dkψ
(
bnZb

−1
)
F (Z)G (a′′′)H (am)φK

(
kZwm,m

(
k

k

))
φ (εamk) .

We use Fubini's theorem: we �rst integrate by k. Since K = GL2m (O) is compact and
the integrand is smooth in k, integration by k results in a linear combination of expressions
of the form
∫

F ∗
dam

∫

Am−1

da′′′
∫

N−
dZψ

(
bnZb

−1
)
F (Z)G (a′′′)H (am)φK

(
kZwm,m

(
ki

ki

))
φ (εamki) ,

for some points ki ∈ K. Thus it su�ces to show that this expression is of the requested
form. Next we integrate by Z. As seen in the proof of Theorem 3.23, Z is actually integrated
on a compact set. Since tZ and nZ are smooth in Z, so is the expression ψ (bnZb

−1)F (Z).
Regarding the expression φK

(
kZwm,m

(
ki
ki

))
, kZ is continuous in Z, and φK is smooth, and
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therefore we get that this expression is also smooth in Z. Thus the integrand is smooth in
Z, and integration by Z results in a linear combination of expressions of the form
∫

F ∗
dam

∫

Am−1

da′′′ψ
(
bnZjb

−1
)
F (Zj)G (a′′′)H (am)φK

(
kZjwm,m

(
ki

ki

))
φ (εamki) ,

for some points Zj ∈ N−. Note that for a �xed Zj, F (Zj) ∈ C [q−s, qs], and therefore we
are now left with the expressions

∫

F ∗
H (am)φ (εamki) dam,(3.9)

∫

Am−1

ψ
(
bnZjb

−1
)
G (a′′′) da′′′,(3.10)

where Zj ∈ N− and ki ∈ K are �xed. The integral (3.9) is clearly a local zeta integral of
Tate, and therefore converges to a rational function in q−ms. Regarding the integral (3.10),
note that ψ

(
bnZjb

−1
)
is smooth in a′′′ (as ψ is smooth and a′′′ 7→ bnZjb

−1 is continuous), and
therefore (3.10) is a multiple local zeta integral of Tate. Therefore we have that Jπ,ψ (s,W, φ)
converges to a rational function in q−s.
Denote Iπ,ψ = spanC {Jπ,ψ (s,W, φ) | W ∈ W (π, ψ) , φ ∈ S (Fm)}. From the equivariance

properties of Jπ,ψ (Proposition 1.10), Iπ,ψ is a C [q−s, qs] module. The characters involved

in the local zeta integrals of (3.10) are in C =
⋃2m−1
i=1 Ci (see also Proposition 3.13). The

integral (3.9) results in an element of L (ms, ωπ)C [q−ms, qms]. C is a �nite set and we have
that

Iπ,ψ ⊆ L (ms, ωπ)
m−1∏

j=1

∏

χ∈C
L (js, χ) · C

[
q−s, qs

]
,

It now is clear that Iπ,ψ is a fractional ideal of C [q−s, qs]. By Theorem 3.31, 1 ∈ Iπ,ψ. We
show that this implies the existence and the uniqueness of the requested polynomial p (z).
Existence: Since C [q−s, qs] is a principal ideal domain, there exists coprime f, g ∈ C [z],

such that Iπ,ψ =
f(q−s)
g(q−s) C [q−s, qs]. Since 1 ∈ Iπ,ψ, there exists h ∈ C [z] and an integerM ≥ 0,

such that
f(q−s)
g(q−s) h (q−s) qMs = 1, i.e. f (z)h (z) = zMg (z). Since f and g are coprime, f | zM ,

and therefore f (q−s) = q−M1s for an integer M1 ≥ 0, and therefore Iπ,ψ = 1
g(q−s)C [q−s, qs].

Writing g (z) = a ·zM2p (z), where a ∈ C∗, 0 ≤M2 ∈ Z, and p is a polynomial with p (0) = 1,
implies Iπ,ψ = 1

p(q−s)C [q−s, qs], and p is a polynomial as requested.

Uniqueness: suppose that Iπ,ψ = 1
p1(q−s)C [q−s, qs] = 1

p2(q−s)C [q−s, qs]. Then p1 (q−s) =

r (q−s) · p2 (q−s), where r (z) is an invertible element of C [z, z−1], i.e. r (z) = a · zM , where
a ∈ C∗ and M ∈ Z, i.e. p1 (z) = a · zM · p2 (z). Since p1 (0) = p2 (0) = 1, this implies a = 1,
M = 0. �

Remark 3.33. Suppose that π is supercuspidal. In this case, (φi)
2m−1
i=1 can be chosen, such that

φi (0) = 0 for every i (see also Remark 3.25). This implies that the integral (3.10) results in an
element of C [q−s, qs] and therefore Jπ,ψ (s,W, φ) results in an element of L (ms, ωπ)C [q−s, qs].
Furthermore, if φ (0) = 0, then the integral (3.9) results in an element of C [q−ms, qms] and
therefore in this case Jπ,ψ (s,W, φ) results in an element of C [q−s, qs].
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Remark 3.34. The calculations done in Subsection 1.2.3 show that the set Iπ,ψ does not de-

pend on the choice of the character ψ (Since for a ∈ F ∗, the expressions Jπ,ψ
(
s, π

((
Im

a−1Im

))
W,φ

)

and Jπ,ψa (s,W a, φ) di�er by multiplication by an invertible element of C [qs, q−s]). We denote
L (s, π,∧2) = 1

p(q−s) where p (z) is as in the theorem.

Corollary 3.35. For every W ∈ W (π, ψ) and φ ∈ S (Fm), Jπ,ψ (s,W, φ) and J̃π,ψ (s,W, φ)
have meromorphic continuations, for all s ∈ C, which we continue to denote Jπ,ψ (s,W, φ)

and J̃π,ψ (s,W, φ). The meromorphic continuations of Jπ,ψ (s,W, φ) and J̃π,ψ (s,W, φ) have
the same equivariance properties as the original forms.

Proof. Since we have shown that Jπ,ψ (s,W, φ) has a meromorphic continuation, so does

J̃π,ψ (s,W, φ) (as it is de�ned using Jπ̃,ψ−1). For every s ∈ C with Re (s) > rπ,∧2 , we have
(Proposition 1.10)

Jπ,ψ

(
s, π

((
g X

g

))
W, ρ (g)φ

)
= |det g|−s ψ

(
tr
(
g−1X

))
Jπ,ψ (s,W, φ) ,

and both sides of the equation are rational functions in the variable q−s. By the uniqueness
theorem, the equation remains valid for every s ∈ C. �

3.5. The functional equation. Let π be an irreducible supercuspidal representation of
GL2m (F ). In this subsection we prove the following

Theorem 3.36. There exists a non-zero element γπ,ψ (s) of C (q−s) such that for every
W ∈ W (π, ψ) and φ ∈ S (Fm) the following equation holds

J̃π,ψ (s,W, φ) = γπ,ψ (s) · Jπ,ψ (s,W, φ) .

Furthermore,

γπ,ψ (s) = επ,ψ (s) · L (1− s, π̃,∧2)

L (s, π,∧2)
,

where επ,ψ (s) is an invertible element of C [q−s, qs].

In this subsection, we denote Gm = GLm (F ). We denote by P2m the mirabolic subgroup
of G2m:

P2m =

{(
g ∗

1

)
| g ∈ GL2m−1 (F )

}
.

We denote byMm,m the Levi subgroup of G2m corresponding to the partition (m,m), by Pm,m
the parabolic subgroup of G2m corresponding to this partition, and by Nm,m the unipotent
radical of Pm,m.
In order to prove this functional equation, we �rst construct an embedding of HomP2m∩S2m (π,Ψ)

into HomP2m∩Mm,m (π, 1) and show that latter has dimension ≤ 1. We show that it follows
that

dim HomS2m

(
π ⊗ S (Fm) , |·|−s ·Ψ

)
≤ 1,

and therefore Jπ,ψ and J̃π,ψ are proportional. Since γπ,ψ (s) is the quotient of two rational
functions, it follows that γπ,ψ (s) ∈ C (q−s). We then show that γπ,ψ has the requested form.

54



3.5.1. Multiplicity one theorem. In this subsection we prove the following Multiplicity one
theorem:

Theorem 3.37. Let π be a supercuspidal irreducible representation of G2m. Then

dimC HomP2m∩Mm,m (π, 1) ≤ 1.

We will need some preparations in order to prove this theorem. We follow [Mat12].
Let n be a positive integer. We denote Gn = GLn (F ). We think of Gk ⊆ Gn (for k < n),

using the standard embedding g 7→
( g

In−k

)
.

Let

Pn = Pn (F ) =

{(
g ∗
0 1

)
| g ∈ GLn−1 (F )

}

be the mirabolic subgroup.
For any 0 ≤ a, b such that a+ b ≤ n we de�ne

M
(n)
a,b =







ga

gb
In−(a+b)


 | ga ∈ GLa (F ) , gb ∈ GLb (F )



 ,

and we denote Ma,b = M
(n)
a,b if a+ b = n.

Let Un = Nn−1,1 =

{(
In−1 v

1

)
| v ∈ F n−1

}
. Then Pn = Gn−1 · Un. For a representation

π of Pn−1, denote Φ+ (π) = indPnPn−1Un
(π′), where

π′ (p · u) = (π ⊗ ψ) (p · u) = ψ (u) π (p) ,

for u ∈ Un, p ∈ Pn−1.
Let p ≥ q ≥ 0 such that p+ q = n. We de�ne σp,q as the following permutation

(
1 2 . . . p− q p− q + 1 p− q + 2 . . . p− 1 p p+ 1 p+ 2 . . . p+ q
1 2 . . . p− q p− q + 1 p− q + 3 . . . p+ q − 3 p+ q − 1 p− q + 2 p− q + 4 . . . p+ q

)
,

and wp,q as the column permutation matrix of σp,q.

Let H
(n)
p,q = wp,qMp,qw

−1
p,q and let H

(n)
p,q−1 = wp,qM

(n)
p,q−1w

−1
p,q . Note that since σp,q (n) = n,

and since
(
wp,qmw

−1
p,q

)
i,j

= mσ−1
p,q(i),σ

−1
p,q(j)

, we have that H
(n)
p,q−1 ⊆ Gn−1.

We also denote

H
(n)
p−1,q−1 =

{(
h

I2

)
| h ∈ H(n−2)

p−1,q−1

}
.

Lemma 3.38. Let p ≥ q ≥ 1 such that p+ 1 = n, and let

S(n)
p,q =

{
g ∈ Gn−1 | ψ

(
gug−1

)
= 1∀u ∈ Un ∩H(n)

p,q

}
.

Then S
(n)
p,q = Pn−1 ·H(n)

p,q−1.

Proof. Let g = ( g0 1 ) ∈ Gn−1 and let u =
(
In−1 x

1

)
where x ∈ F n−1, then

gug−1 =

(
In−1 g0x

1

)
.

Let rown−1 (g0) denote the (n− 1)th row of g0, then ψ (gug−1) = ψ (rown−1 (g0) · x).
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Elements of M
(n)
p,q have as their last column, a column consisting of 0 at the �rst p places,

and therefore elements of H
(n)
p,q have as their last column, a column which consists of zeros

at the places σp,q (1) , . . . , σp,q (p). Therefore

Un ∩H(n)
p,q =

{(
In−1 x

1

)
| x ∈ F n−1 | xσp,q(1) = · · · = xσp,q(p) = 0

}
.

Therefore if ∀u ∈ Un ∩ H(n)
p,q , we have ψ (gug−1) = 1, then rown−1 (g0) must have zeros at

the places σp,q (p+ 1) , . . . , σp,q (p+ q − 1) - otherwise if rown−1 (g0) doesn't have zero in an

element σp,q (p+ i) for 1 ≤ i ≤ q − 1, we can choose an element u =
(
In−1 x

1

)
∈ Un ∩H(n)

p,q ,
with x being a vector having zeros everywhere except for the (p+ i)th place, where we
can put an element such that rown−1 (g0) · x = a, where ψ (a) 6= 1, and then ψ (gug−1) =
ψ (rown−1 (g0) · x) 6= 1.
It is clear from the equality ψ (gug−1) = ψ (rown−1 (g0) · x) and from the computation of

Un ∩H(n)
p,q that if rown−1 (g0) consists of zeros at the places σp,q (p+ 1) , . . . , σp,q (p+ q − 1),

then g ∈ S(n)
p,q .

Therefore

S(n)
p,q = {g ∈ Gn−1 | rown−1 (g) has zeros at the places σp,q (p+ 1) , . . . , σp,q (p+ q − 1)} .

We claim that this set equals Pn−1 ·H(n)
p,q−1. Regarding the inclusion Pn−1 ·H(n)

p,q−1 ⊆ S
(n)
p,q : let

p′ ∈ Pn−1, h ∈ H(n)
p,q−1, then the (n− 1)th row of p′h equals the (n− 1)th row of h. Write h =

wp,qmw
−1
p,q , where m = ( gp gq ), where gp ∈ GLp (F ), gq ∈ GLq (F ), then hij = mσ−1

p,q(i),σ
−1
p,q(j)

,

and therefore hn−1,j = mp,σ−1
p,q(j)

and

hn−1,σp,q(p+j) = mp,p+j = 0,

for every 1 ≤ j ≤ q − 1.

Regarding the inclusion S
(n)
p,q ⊆ Pn−1 ·H(n)

p,q−1, suppose g = ( g0 1 ) with g0 ∈ GLn−1 (F ) and
that rown−1 (g0) has zeroes at the places σp,q (p+ 1) , . . . , σp,q (p+ q − 1). Choose any matrix

m ∈ M (n)
p,q−1, such that mp,j = (g0)n−1,σp,q(j)

, for 1 ≤ j ≤ p. Then h = wp,qmw
−1
p,q ∈ H(n−1)

p,q−1 ,

and h and g share the same (n− 1)th row. Therefore gh−1 ∈ Pn−1 and g ∈ Pn−1H
(n−1)
p,q−1 , as

required. �

Lemma 3.39. Let p ≥ q ≥ 2 such that p+ q = n, and let

S
(n)
p,q−1 =

{
g ∈ Gn−2 | ψ

(
gug−1

)
= 1∀u ∈ Un−1 ∩H(n−1)

p,q−1

}
.

Then S
(n)
p,q−1 = Pn−2 ·H(n)

p−1,q−1.

Remark 3.40. As noted above, H
(n−1)
p,q−1 ⊆ Gn−1. We may think of all groups in the lemma as

subgroups of GLn−1 (F ).

Proof. Let g = ( g0 1 ), where g0 ∈ GLn−2 (F ) and u =
(
In−2 x

1

)
, where x ∈ F n−2. Then,

as before, gug−1 =
(
In−2 g0x

1

)
. Again, ψ (gug−1) = ψ (rown−2 (g0) · x), where rown−2 (g0)

denotes the (n− 2)th row of g0. We compute Un−1 ∩H(n−1)
p,q−1 . First, we notice that σp,q (p) =

p+ q − 1 = n− 1. Elements of M
(n)
p,q−1 have zeros at the pth column at positions p+ 1, . . . ,
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p + q − 2, and therefore elements of H
(n)
p,q−1 have zeros at the (n− 1)th column at positions

σp,q (p+ 1), . . . , σp,q (p+ q − 2). Therefore we get

Un−1 ∩H(n−1)
p,q−1 =

{(
In−2 x

1

)
| x ∈ F n−2 | xσp,q(p+1) = · · · = xσp,q(p+q−2) = 0

}
.

As before, since ψ (gug−1) = ψ (rown−2 (g0) · x), we get that if ψ (gug−1) = 1 ∀u ∈ Un−1 ∩
H

(n−1)
p,q−1 , then rown−2 (g0) must have zeros at the places σp,q (1) , σp,q (2) , . . . , σp,q (p), and that

S
(n)
p,q−1 =

{(
g0

1

)
| rown−2 (g0) has zeros at the places σp,q (1) , σp,q (2) , . . . , σp,q (p)

}
.

As before, we claim that S
(n)
p,q−1 = Pn−2 ·H(n)

p−1,q−1. For the inclusion S
(n)
p,q−1 ⊇ Pn−2 ·H(n)

p−1,q−1,

one writes g = p′h where p′ ∈ Pn−2 and h ∈ H
(n)
p−1,q−1. Then the (n− 2)th row of g

equals the (n− 2)th row of h. Write h = wp−1,q−1mw
−1
p−1,q−1 where m ∈ M

(n−2)
p−1,q−1. Then

σp−1,q−1 (n− 2) = n−2 = p+ q−2 > p−1 and hn−2,j = mn−2,σ−1
p−1,q−1(j). Since n−2 > p−1,

mn−2,j = 0, for 1 ≤ j ≤ p− 1, and therefore hn−2,σp−1,q−1(j) = 0, for 1 ≤ j ≤ p− 1. Note that
for 1 ≤ j ≤ p− 1

σp−1,q−1 (j) =

{
j 1 ≤ j ≤ p− q
p− q + 2k − 1 j = p− q + k, (1 ≤ k ≤ q − 1)

= σp,q (j) ,

and therefore hn−2,σp,q(j) = 0, for 1 ≤ j ≤ p − 1. Finally, σp,q (p) = n − 1 and hn−2,n−1 =

mn−2,n−1 = 0 (as m ∈ Gn−2). Therefore g ∈ S(n)
p,q−1. The other inclusion is shown as in the

previous proof. �

Proposition 3.41. Suppose p ≥ q ≥ 1 with p + q = n. Let (σ, V ) be a representation of

Pn−1, and let χ be a positive character of Pn ∩H(n)
p,q . Then there exists a positive character

χ′ of Pn−1 ∩H(n)
p,q−1, such that

Hom
Pn∩H(n)

p,q

(
Φ+ (σ) , χ

)
↪→ Hom

Pn−1∩H(n)
p,q−1

(σ, χ′) .

Proof. Denote W = Φ+ (V ) = Φ+ (σ) = indPnPn−1Un
(σ′) where σ′ = σ ⊗ ψ de�ned as above.

Let A be the projection operator from S (Pn, V ) to W = indPnPn−1Un
(σ′), de�ned as

(Af) (p) =

∫

Pn−1Un

σ′−1 (y) f (yp) dµPn−1Un,r (y) .

Since f is a Schwartz function, for a �xed p, the integral is integrated on (suppf) p−1, and
therefore converges. A direct computation shows that Af ∈ indPnPn−1Un

(σ′). One can show
that A is surjective.
Let L ∈ Hom

Pn∩H(n)
p,q

(Φ+σ, χ). We de�ne using A and L a distribution T = L ◦ A :

S (Pn, V )→ C. A direct computation shows that this distribution satis�es

〈T, ρ (h0) f〉 = χ (h0) 〈T, f〉 , ∀h0 ∈ Pn ∩H(n)
p,q ,(3.11)

〈T, λ (y0) f〉 = δPn−1Un (y0)
〈
T, σ′−1 (y0) f

〉
, ∀y0 ∈ Pn−1Un.(3.12)
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Therefore the map L 7→ L◦A de�nes a map from Hom
Pn∩H(n)

p,q
(Φ+ (σ) , χ) to the subspace of

distributions on S (Pn, V ) satisfying the relations (3.11) and (3.12). This map is injective,
since A is surjective.
We de�ne for u ∈ Un and g ∈ Gn−1, Ψ (ug) = ψ (u). This is well de�ned, as if u1g1 = u2g2,

then u−1
2 u1 = g2g

−1
1 ∈ Gn−1 ∩ Un = {In}, and therefore u1 = u2.

We have that for u1, u2 ∈ Un and g2 ∈ Gn−1

Ψ (u1u2g2) = ψ (u1u2) = ψ (u1) Ψ (u2g2) .

Let T be a distribution on S (Pn, V ) satisfying the relations (3.11) and (3.12). We de�ne
Ψ · T as the following distribution:

〈Ψ · T, f〉 = 〈T,Ψ · f〉 .
One can check that for u ∈ Un we have

〈λ (u) (Ψ · T ) , f〉 = 〈T ·Ψ, f〉 .
To show this, one uses the fact that for p ∈ Pn we have Ψ (u−1p) = ψ (u−1) Ψ (p) f (p) and
that δPn−1Un �Un≡ 1. Therefore, Ψ · T is left invariant to translations by Un. It follows that
there exists a distribution S on S (Gn−1, V ), such that

〈Ψ · T, f〉 =

∫

Gn−1

[∫

Un

f (ug) du

]
dS (g) .

(This eventually follows from the well known fact that the averaging map α : S (Pn, V ) →
S
(
Un\Pn , V

)
de�ned by (α (f)) (p) =

∫
Un
f (up) du is surjective)

A simple computation shows that for u0 ∈ Un, f ∈ S (Pn, V ) we have 〈Ψ · T, f〉 =
〈Ψ · T, ρ (u0) f〉.
Note that since χ is positive and Un ∩ H(n)

p,q is a subgroup of F n−1, χ must be trivial on

this subgroup (as for every a ∈ Un ∩H(n)
p,q , belongs to a compact subgroup Ka, and therefore

χ (Ka) is compact, but since χ is positive, χ �Ka≡ 1 and therefore χ (a) = 1). Therefore we

get that 〈T, ρ (u) f〉 = 〈T, f〉, for every u ∈ Un ∩H(n)
p,q .

Using both equalities yields

〈T, ρ (u) Ψf〉 = 〈T,Ψf〉 ∀u ∈ Un ∩H(n)
p,q ,

for every f ∈ S (Pn).

This implies that for g0 ∈ suppS, we have Ψ (g0u0) = Ψ (g0), which implies suppS ⊆ S
(n)
p,q

and suppT = supp (Ψ · T ) ⊆ Un · S(n)
p,q . Using the decomposition S

(n)
p,q = Pn−1H

(n)
p,q−1, we have

that

suppT ⊆ Pn−1UnH
(n)
p,q−1.

Hence that map T 7→ T �S
(
Pn−1UnH

(n)
p,q−1,V

) is injective.
Consider the projection B : S

(
Pn−1Un ×H(n)

p,q−1, V
)
→ S

(
Pn−1UnH

(n)
p,q−1, V

)
de�ned by

(Bf)
(
y−1h

)
=

∫

Pn−1∩H(n)
p,q−1

f (ay, ah) dµr (a)
(
y ∈ Pn−1Un, h ∈ H(n)

p,q−1

)
.
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This is well de�ned as if y−1
1 h1 = y−1

2 h2, then

y1y
−1
2 = h1h

−1
2 ∈ H(n)

p,q−1 ∩ (Pn−1Un) = Pn−1 ∩H(n)
p,q−1.

(the sets are equal, since h = pu =⇒ u = p−1h ∈ Gn−1 ∩ Un = {In}).
Therefore by substituting a = a′ · y2y

−1
1 , we get the required equality of the integrals.

One can show that B is surjective.

Consider the isomorphism φ 7→ φ̃ of S
(
Pn−1Un ×H(n)

p,q−1, V
)
, de�ned by

φ̃ (y, h) = χ (h) δPn−1Un (y)σ′
(
y−1
)
φ (y, h)

Let T be a distribution on S (Pn, V ) satisfying the relations as above. We de�ne a dis-

tribution D on S
(
Pn−1Un ×H(n)

p,q−1, V
)
by 〈D,φ〉 =

〈
T,B

(
φ̃
)〉

. Let φ1 = ρ (y0, h0)φ, for

y0 ∈ Pn−1Un, h0 ∈ H(n)
p,q−1. A direct calculation shows that

φ1

:
= χ (h0)−1 δPn−1Un (y0)−1 σ′ (y0) ρ (y0, h0) φ̃,

which implies that

B
(
φ1

:)
= χ (h0)−1 δPn−1Un (y0)−1

(
ρ (h0)λ (y0)σ′ (y0)B

(
φ̃
))

,

which implies that
〈
T,B

(
φ1

:)〉
=
〈
T,B

(
φ̃
)〉

.

Therefore we get that 〈D, ρ (y0, h0)φ〉 = 〈D,φ〉, for any y0 ∈ Pn−1Un, h0 ∈ H(n)
p,q−1. This

means that D is invariant to right translations of Pn−1Un×H(n)
p,q−1. It follows that there exists

a unique functional ξD on V , such that 〈D,φ〉 =
∫
H

(n)
p,q−1

∫
Pn−1Un

〈ξD, φ (y, h)〉 dr (y) dr (h) (see

[War72, Proposition 5.2.1.2]).

Now let b ∈ H(n)
p,q−1 ∩ Pn−1. Let φ1 = λ (b, b)φ. A simple calculation yields

φ1

:
= χ (b) δPn−1Un (b)

(
λ (b, b)

(
σ′
(
b−1
)
φ

:))
.

Note that for an arbitrary f ∈ S
(
Pn−1Un ×H(n)

p,q−1, V
)
, we have

B (λ (b, b) f)
(
y−1h

)
= δ1 (b)B (f)

(
y−1h

)
,

where δ1 = δ
Pn−1∩H(n)

p,q−1
. Therefore

〈D,λ (b, b)φ〉 = χ (b) δPn−1Un (b) δ1 (b)
〈
D, σ′

(
b−1
)
φ
〉
.

On the other hand one has

〈D,λ (b, b)φ〉 = δ (b) 〈D,φ〉 ,
where δ = δ

H
(n)
p,q−1

(b) δPn−1Un (b), and therefore

〈
D, σ′

(
b−1
)
φ
〉

= χ (b)−1 δ (b)−1 δ1 (b) δPn−1Un (b) 〈D,φ〉 .

Denote χ′ (b)−1 = χ (b) δ (b) δ1 (b)−1 δPn−1Un (b)−1. This is a positive character of Pn−1∩H(n)
p,q−1,

as a product of such. Using the uniqueness of ξD we get that 〈σ′ (b) ξD, v〉 = χ′ (b)−1 〈ξD, v〉,
for every v ∈ V and b ∈ H(n)

p,q−1 ∩ Pn−1. This implies that ξD ∈ Hom
H

(n)
p,q−1∩Pn−1

(σ, χ′).
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Therefore we get the requested embedding as the following composition of injective maps:

L 7→ L ◦ A = T,

T 7→ T �S
(
Pn−1UnH

(n)
p,q−1,V

)= T ′,

T ′ 7→ T ′ ◦B ◦˜= D,

D 7→ ξD.

�

Proposition 3.42. Suppose p ≥ q ≥ 2 with p + q = n. Let (σ, V ) be a representation of

Pn−2, and let χ be a positive character of Pn−1∩H(n)
p,q−1. Then there exists a positive character

χ′ of Pn−2 ∩H(n)
p−1,q−1, such that

Hom
Pn−1∩H(n)

p,q−1

(
Φ+ (σ) , χ

)
↪→ Hom

Pn−2∩H(n)
p−1,q−1

(σ, χ′) .

The proof is similar to the proof of the previous proposition. One uses the decomposition

S
(n)
p,q−1 = Pn−2H

(n)
p−1,q−1 instead of S

(n)
p,q = Pn−1H

(n)
p,q−1.

Now we can prove Theorem 3.37.

Proof. Since π is an irreducible supercuspidal representation, its restriction to P2m equals
π �P2m

∼= (Φ+)
2m−1

(1) ([BZ76, 5.18], [Gel70, Theorem 2.3]). We �rst show

dim Hom
P2m∩H(2m)

m,m

((
Φ+
)2m−1

(1) , 1
)
≤ 1.

Using Proposition 3.41 and then Proposition 3.42, we obtain the existence of characters

χ′ : P2m−1∩H(2m)
m,m−1 → C∗ and χ′′ : P2m−2∩H(2m)

m−1,m−1 → C∗ and embeddings of the following
form

Hom
P2m∩H(2m)

m,m

((
Φ+
)2m−1

(1) , 1
)
↪→ Hom

P2m−1∩H(2m)
m,m−1

((
Φ+
)2m−2

(1) , χ′
)

↪→ Hom
P2m−2∩H(2m)

m−1,m−1

((
Φ+
)2m−3

(1) , χ′′
)
.

Note that the standard embedding of H
(2m−2)
m−1,m−1 in G2m is H

(2m)
m−1,m−1, and therefore

Hom
P2m−2∩H(2m)

m−1,m−1

((
Φ+
)2m−3

(1) , χ′′
)

= Hom
P2m−2∩H(2m−2)

m−1,m−1

((
Φ+
)2m−3

(1) , χ′′
)
.

Continuing using Proposition 3.41 and Proposition 3.42 repeatedly, we obtain an embedding

Hom
P2m∩H(2m)

m,m

((
Φ+
)2m−1

(1) , 1
)
↪→ Hom

P1∩H(2)
1,0

(1, 1) .

Since P1 ∩H(2)
1,0 = {I2}, we have Hom

P1∩H(2)
1,0

(1, 1) = C, and therefore

dimC Hom
P2m∩H(2m)

m,m

((
Φ+
)2m−1

(1) , 1
)
≤ dimC C = 1.

We now show that dim HomP2m∩Mm,m (π, 1) ≤ 1. We have that

wm,mMm,mw
−1
m,m ∩ P2m = wm,m

(
Mm,m ∩ w−1

m,mP2mwm,m
)
w−1
m,m.
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Since σ (2m) = 2m, we have that
(
w−1
m,mpwm,m

)
m,j

= pσ(m),σ(j) = pm,σ(j) =

{
1 j = m

0 j 6= m
,

for p ∈ P2m, and therefore w−1
m,mP2mwm,m ⊆ P2m. Similarly, since σ−1 (m) = m, we have

wm,mP2mw
−1
m,m ⊆ P2m, and therefore wm,mP2mw

−1
m,m = P2m, and we get

P2m ∩H(2m)
m,m =wm,m (P2m ∩Mm,m)w−1

m,m.

Therefore we have

Hom
P2m∩H(2m)

m,m
(π, 1) ∼= HomP2m∩Mm,m (π, 1) ,

by mapping L ∈ Hom
P2m∩H(2m)

m,m
(π, 1) to Lπ (wm,m). Therefore, we get the result

dimC HomP2m∩Mm,m (π, 1) ≤ 1.

�

3.5.2. An embedding of two homomorphism spaces. In this subsection, we construct an em-
bedding HomP2m∩S2m (π,Ψ) ↪→ HomP2m∩Mm,m (π, 1). We follow [Mat14, Section 4].
We begin with the following lemma.

Lemma 3.43. Let π be a representation of Pm,m, L ∈ HomNm,m

(
π �Nm,m ,Ψ

)
and v ∈ Vπ.

Denote by S : Pm,m → C the map

S (p) = L (π (p) v) ,

and by S̃ : Gm → C the map S̃ (g) = S ((
g
Im )). Then there exists a function ξ ∈ S (Mm (F )),

such that for every g ∈ Gm, one has S̃ (g) = S̃ (g) ξ (g). In particular, the integral

ck (S) =

∫
g∈Gm

|det g|=q−k
S̃ (g) dg

converges absolutely for all k ∈ Z. Moreover ck (S) = 0 for k � 0.

Proof. Since π is smooth,
(
stabPm,mv

)
∩ Nm,m ⊆ Nm,m is an open subgroup of Nm,m and

contains a compact subgroup. Since the projection homomorphism Nm,m →Mm (F ) (de�ned
by
(
Im X

Im

)
7→ X) is an open map, we get that that there exists an open compact subgroup

C of Mm (F ) such that
(
Im C

Im

)
stabilizes v.

Let f : Mm (F ) → C be the indicator function of C, f = 1χC . For a Haar measure on
Mm (F ), normalized by C, we have for every p ∈ Pm,m:

S (p) =

∫

Mm(F )

S

(
p

(
Im X

Im

))
f (X) dX.

Taking p = (
g
Im ) and using the fact that L is a homomorphism we get

S̃ (g) = S̃ (g) ·
∫

Mm(F )

f (X)ψ (tr (gX)) dX.

We denote ξ (g) =
∫
Mm(F )

f (X)ψ (tr (gX)) dX. ξ (g) is the Fourier transform of the function

f ∈ S (Mm (X)), and therefore ξ ∈ S (Mm (X)).
Since ξ is a Schwartz function, it has compact support. Therefore, if X ∈ suppξ, |detX| is

bounded as a continuous image of a compact set, and thus if |detX| is large, then ξ (X) = 0.
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Hence, S̃ (g) = ξ (g) S̃ (g) vanishes for g with large |det g|, and therefore
∫

g∈Gm
|det g|=q−k

S̃ (g) dg

vanishes for k < 0 from some place.
Finally, for k ∈ Z the set

{
X ∈Mm (F ) | |detX| = q−k

}
=
{
g ∈ Gm | |det g| = q−k

}
is

closed, and therefore its intersection with suppξ is compact. Since S̃ (g) = S̃ (g) ξ (g), the in-
tegral

∫
g∈Gm

|det g|=q−k
S̃ (g) dg is actually integrated on a compact subset ofMm (F ), and therefore

converges absolutely. �
Lemma 3.44. Let S ∈ IndG2m

Nm,m
(Ψ). Then there exists φ ∈ S (Mm ×Gm ×GL2m (O)), such

that

S (g) =

∫

Mm

dY

∫

Gm

db

∫

GL2m(O)

dkS

(
g

(
b−1

Im

)(
Im Y

Im

)(
Im

b

)
k

)
φ (Y, b, k) |det b|m .

Proof. Since S is in IndG2m
Nm,m

(Ψ), there exists an open subset K ⊆ G2m such that S (gk0) =

S (g), for every k0 ∈ K.
The map Mm ×Gm ×GL2m (O)→ G2m de�ned by

(Y, b, k) 7→
(
b−1

Im

)(
Im Y

Im

)(
Im

b

)
k

is continuous, and therefore there exists an open subset C ⊆ Mm × Gm × GL2m (O), such
that the image of C under this map is contained in K. Mm × Gm × GL2m (O) is an l-
group as a product of such, and therefore we may assume that C is compact. The function
φ (Y, b, k) = µ (C)−1 χC (Y, b, v) · |det b|−m is as requested (Here µ is the Haar measure on
Mm ×Gm ×GL2m (O) given by µ (A) =

∫
Mm

dY
∫
Gm

db
∫

GL2m(O)
dk1χA (Y, b, k)). �

We now introduce a quite long list of notations. Let π be an irreducible representa-
tion of G2m and let L ∈ HomNm,m (π,Ψ). For v ∈ Vπ we denote Lv ∈ IndGNm,m (Ψ) by

Lv (g) = L (π (g) v) (Frobenius reciprocity). Let S = Lv for some v ∈ Vπ. The pre-
vious lemma associates (not uniquely) to S a smooth map with compact support φ ∈
S (Mm ×Gm ×GL2m (O)).
Let Cb be the compact support of φ (Y, b, k) in the variable b ∈ Gm and denote by φ′ :

Mm → C the characteristic function of C−1
b : φ′ (x) = 1χC−1

b
(x) (Note that since Gm is open

in Mm, and C
−1
b is open in Gm and compact, we have that C−1

b is an open compact subset
of Mm). We denote by Φ the map in the variables A,X ∈ Mm, b ∈ Gm and k ∈ GL2m (O)
de�ned by

Φ

((
A X

b

)
, k

)
=

∫

Mm

dY

∫

Mm

dZφ (Y, b, k)φ′ (Z)ψ (tr (Y A− ZX)) .

This integral converges absolutely, as the integrand is a smooth function with compact
support in both variables Y , Z.

Φ can be written as a product of Fourier transforms of two Schwartz functions:

Φ

((
A X

b

)
, k

)
=

∫

Mm

φ (Y, b, k)ψ (tr (Y A)) dY ·
∫

Mm

φ′ (Z)ψ (tr (−ZX)) dZ.

It follows at once that as such, Φ is smooth and has compact support in the variables
(A,X, b, k) ∈Mm ×Mm ×Gm ×GL2m (O).
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Lemma 3.45. For S, φ and Φ as above and a, b ∈ Gm, the integrals

I (S,Φ, a, b) =

∫

Mm

dX

∫

GL2m(O)

dkS

((
a X

b

)
k

)
Φ

((
a X

b

)
, k

)
,

J (S, φ, a, b) =

∫

Mm

dY

∫

GL2m(O)

dkS

((
a

Im

)(
Im Y

Im

)(
Im

b

)
k

)
φ (Y, b, k) ,

both converge absolutely, and are equal. They de�ne a map which is smooth with respect
to the variables a ∈ Gm, b ∈ Gm. The map's support is contained in a compact subset of
Mm ×Gm.

Proof. Since the maps X 7→ Φ (( a Xb ) , k) and Y 7→ φ (Y, b, k) have compact support in the
variables X and Y respectively, the integrals are actually integrated on compact sets. These
integrals converge absolutely, as their corresponding integrands are smooth functions on
compact sets.

We de�ne f : Gm×Mm×Gm×GL2m (O)→ C by f (a,X, b, k) = S

((
a X

b

)
k

)
Φ

((
a X

b

)
, k

)
.

Since S ∈ IndG2m
Nm,m

(Ψ), we have

f (a,X, b, k) = ψ
(
tr
(
Xb−1

))
S

((
a

b

)
k

)
Φ

((
a X

b

)
, k

)
.

By substituting the de�nition of Φ we get
∫

Mm

f (a,X, b, k) dX =S

((
a

b

)
k

)∫

Mm

φ (Y, b, k)ψ (tr (Y a)) dY ·

·
∫

Mm

ψ
(
tr
(
Xb−1

))(∫

Mm

φ′ (Z)ψ (tr (−ZX)) dZ

)
dX.

We notice that the integral
∫
Mm

φ′ (Z)ψ (tr (−ZX)) dZ is the Fourier transform of φ′ at the
point −X, and therefore
∫

Mm

ψ
(
tr
(
Xb−1

))(∫

Mm

φ′ (Z)ψ (tr (−ZX)) dZ

)
dX =

∫

Mm

ψ
(
tr
(
−X ′b−1

))
φ̂′ (X ′) dX ′,

which equals the value of the Fourier transform of φ̂′ at the point −b−1. By Fourier's inversion
formula we get that

∫

Mm

f (a,X, b, k) dX =

∫

Mm

S

((
a

b

)
k

)
φ′
(
b−1
)
φ (Y, b, k)ψ (tr (Y a)) dY.

Since φ′ is the indicator function of C−1
b , where Cb is the support of φ in the variable b, we

have that φ (Y, b, k) vanishes whenever φ′ (b−1) vanishes, and therefore
∫

Mm

f (a,X, b, k) dX =

∫

Mm

φ (Y, b, k)S

((
a

b

)
k

)
ψ (tr (Y a)) dY.

Finally, using again the fact that S ∈ IndG2m
Nm,m

(Ψ) we have

ψ (tr (Y a))S

((
a

b

)
k

)
= S

((
a

Im

)(
Im Y

Im

)(
Im

b

)
k

)
,
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and we get
∫

Mm

f (a,X, b, k) dX =

∫

Mm

φ (Y, b, k)S

((
a

Im

)(
Im Y

Im

)(
Im

b

)
k

)
dY.

Integrating both expressions for
∫
Mm

f (a,X, b, k) dX by k on GL2m (O), yields the desired
equality.
We now move to explain why the integrals de�ne a smooth function whose support is

contained in a compact subset of Mm × Gm. Using Proposition 3.8 with the compact set
suppφ and G = G2m, the map (Y, b, k) 7→

(
Im Y

Im

) (
Im

b

)
k, the representation IndG2m

Nm,m
(π)

and the vector v = S, we get that there exists a sequence (Si)
N
i=1 ⊆ IndG2m

Nm,m
(π) and a

sequence (αi)
N
i=1 of smooth functions αi : suppφ→ C, such that

ρ

((
Im Y

Im

)(
Im

b

)
k

)
S =

N∑

i=1

αi (Y, b, k)Si,

for every (Y, b, k) ∈ suppφ. We extend the de�nition of αi to the set Mm ×Gm ×GL2m (O)
by de�ning it to be zero outside of suppφ. This is still a smooth function, as suppφ is closed
in the larger set.
We have that

S

((
a

Im

)(
Im Y

Im

)(
Im

b

)
k

)
=

N∑

i=1

αi (Y, b, k)Si
:

(a) ,

and therefore

J (S, φ, a, b) =
N∑

i=1

Si
:

(a)

∫

Mm

dY

∫

GL2m(O)

dkαi (Y, b, k)φ (Y, b, k) .

Si
:

is smooth, since IndG2m
Nm,m

(Ψ) is smooth. αi · φ is smooth as well in the variable b, and
therefore the integral de�nes a smooth function.

Finally, Si
:

= Si
: · ξi, where ξi ∈ S (Mm), and therefore suppSi

: ⊆ suppξi, where suppξi is
compact. We get immediately that the support of the function that this integral de�nes is
contained in

⋃N
i=1 (suppξi)×(suppbφ). This �nite union is a compact subset ofMm×Gm. �

Let

Ω =

{(
A B
C D

)
| A,B,C,D ∈Mm |

(
C D

)
has rank m

}
.

Then Ω is an open subset ofM2m as having rank m is equivalent for having a non-zero minor
of order m. We denote

Ω0 =

{(
A B

d

)
| A,B ∈Mm, d ∈ Gm

}
.

Using the same elimination algorithm used in the proof of the Iwasawa decomposition, one
gets that the multiplication map r : Ω0 ×GL2m (O)→ Ω, r (p, k) = pk is surjective.
We de�ne a map Φ∗ : Ω→ C by

Φ∗ (pk) =

∫

k′∈GL2m(O)∩Pm,m
Φ
(
pk′−1, k′k

)
dk′,
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for p ∈ Ω0, k ∈ GL2m (O). This map is well de�ned: if p1k1 = p2k2 then p1 = p2k2k
−1
1 .

Writing p1 = ( A B
0 d ), p2 =

(
A′ B′
0 d′

)
, k2k

−1
1 =

(
A′′ B′′
C′′ D′′

)
implies d′ · C ′′ = 0, and since d′ is

invertible, this implies C ′′ = 0, and therefore k2k
−1
1 ∈ Pm,m ∩ GL2m (O). Translating the

integral in the de�nition of Φ∗ by k2k
−1
1 from the right, we get

∫

k′∈GL2m(O)∩Pm,m
Φ
(
p1k

′−1, k′k1

)
dk′ =

∫

k′′∈GL2m(O)∩Pm,m
Φ
(
p2k

′′−1, k′′k2

)
dk′′.

Since Φ is smooth with compact support, there exists an open compact subgroup of GL2m (O),
such that Φ is invariant to right multiplication of the variable k under this subgroup. There-
fore the map Φ∗ is �xed by right multiplication under a compact open subgroup of GL2m (O).
Similarly, there exist open compact subgroups CA ⊆ Mm, CX ⊆ Mm, Cd ⊆ Gm, such that,
for any

(
A0 X0

d0

)
∈ Ω0, A

′ ∈ CA, X ′ ∈ CX , d′ ∈ Cd and k ∈ GL2m (O)

Φ

((
A′ + A0 X ′ +X0

d′d0

)
, k

)
= Φ

((
A0 X0

d0

)
, k

)
.

Choosing the subgroups such that CA = CX ⊆Mm (O) implies that Φ∗
((

A′+A0 X′+X0

d′d0

)
k
)

=

Φ∗
((

A0 X0
d0

)
k
)
. Combining these facts, we get that Φ∗ is smooth.

It follows that suppΦ∗ is closed. It is clear that suppΦ∗ ⊆ r (suppΦ) · GL2m (O), where
r is again the multiplication map. Since suppΦ and GL2m (O) are compact, we get that
r (suppΦ) ·GL2m (O) is compact, and therefore suppΦ∗ is compact, as a closed subset of this
compact set.
We wish to extend the de�nition of Φ∗ to a Schwartz function on M2m, in order to be

able to use it for a Godement-Jacquet integral (Theorem 3.4) in the proof of Proposition
3.47. Note that suppΦ∗ is open and compact. Therefore, we can extend Φ∗ : M2m → C to a
Schwartz function on M2m, by de�ning Φ∗ as zero outside of Ω.
Let U be a compact open subgroup of GL2m (O), such that Φ∗ is invariant under left

multiplication by U . We de�ne for S (g) = L (π (g) v) where v ∈ Vπ,

SU (g) =

∫

U

S
(
u−1g

)
du,

where du is a normalized Haar measure of U . SU is a matrix coe�cient of π: the functional
L̃ : Vπ → C de�ned by L̃ (v) =

∫
U
L (π (u−1) v) du is smooth, since it is invariant to the

action of U , and therefore SU (g) =
〈
L̃, π (g) v

〉
is indeed a matrix coe�cient.

For k, l ∈ Z we de�ne

ak,l (Φ, S) = q−lm
∫
|det a|=q−k
|det b|=q−l

I (S,Φ, a, b) dadb,

bk,l (φ, S) = q−lm
∫
|det a|=q−k
|det b|=q−l

J (S, φ, a, b) dadb.

Note that

{
(a, b) ∈ Gm ×Gm | |det a| = q−k, |det a| = q−l

}
=
{

(a, b) ∈Mm ×Gm | |det a| = q−k, |det a| = q−l
}
,
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is a closed subset ofMm×Gm. Since the support of I (S,Φ, a, b) = J (S, φ, a, b) (with respect
to the variables a, b) is contained in a compact subset of Mm ×Gm, this integral is actually
integrated on a compact set (as an intersection of a closed set and a compact set), and since
the integrand is smooth, the integral converges absolutely.
Furthermore, since the support of I (S,Φ, a, b) = J (S,Φ, a, b) (with respect of the variables

a, b) is contained in a compact subset ofMm×Gm, the image of map (a, b) 7→ (|det a| , |det b|)
is bounded for a, b in the support, and therefore I (S,Φ, a, b) vanishes for a, b ∈ Gm with
large determinant. This implies that ak,l (Φ, S) = 0 for k, l � 0. Moreover, since b ∈ Gm,
|det b| is also bounded from below, i.e. ak,l (Φ, S) = 0 for l� 0.
We now de�ne

I (S,Φ∗, a, b) =

∫

Mm

dX

∫

GL2m(O)

dk0S

((
a X

b

)
k0

)
Φ∗

((
a x

b

)
k0

)
,

ak,l (S,Φ∗) = q−lm
∫
|det a|=q−k
|det b|=q−l

I (S,Φ∗, a, b) dadb.

Claim 3.46. ak,l (S,Φ) = ak,l (S,Φ∗).

Proof. One substitutes the de�nitions of I (S,Φ∗, a, b) and Φ∗ to the expression

∫
|det a|=q−k
|det b|=q−l

I (S,Φ∗, a, b) dadb.

Note that for k′ ∈ GL2m (O) ∩ Pm,m and ( a Xb ) ∈ Pm,m, one has ( a Xb ) =
(
a′ X′

b′
)
k′, where(

a′ X′
b′
)
∈ Pm,m. Substituting ( a Xb ) =

(
a′ X′

b′
)
k′ (in the same notations as in the de�nitions),

and then substituting k0 = k′−1k′′ (for the integration with respect to k0 ∈ GL2m (O)) yields
the desired equality. �

Proposition 3.47. The sum
∑

j∈Z

∣∣∣∣∣
∑

k,l∈Z
k+l=j

ak,l (S,Φ) q−ksq−ls

∣∣∣∣∣ converges for Re (s) greater

than a real rπ depending only on π. In particular the sum

∑

j∈Z

∑

k,l∈Z
k+l=j

ak,l (S,Φ) q−ksq−ls

converges for Re (s) > rπ for the same rπ. The latter sum extends meromorphically to an
element of L

(
π, s+ 1

2

)
C [qs, q−s].

Proof. As seen before, ak,l (S,Φ) = ak,l (S,Φ∗). For a �xed j the sum

dj (S,Φ) =
∑

k,l∈Z
k+l=j

ak,l (S,Φ∗) q
−ksq−ls
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is a �nite sum, as we have seen that ak,l (S,Φ) vanishes for k, l � 0. A simple calculation
shows that

dj (S,Φ) = q−j(m+s)

∫

|det(( a Xb )k0)|=q−j
dadb

∫

Mm

dX

∫

GL2m(O)

dk0

1

|det a|mS
((

a X
b

)
k0

)
Φ∗

((
a X

b

)
k0

)
.

To proceed, we use the following expression for the Haar measure on G2m:
∫

G2m

f (g) dg =

∫

Gm

da

∫

Gm

db

∫

Mm

dX

∫

GL2m(O)

dk0
1

|det a|mf
((

a X
b

)
k0

)
.

Therefore

dj (S,Φ) =

∫

|det g|=q−j
S (g) Φ∗ (g) |det g|m+s dg.

Since Φ∗ is invariant under left translations of U , we have

dj (S,Φ) =

∫

|det g|=q−j
SU (g) Φ∗ (g) |det g|m+s dg,

hence

|dj (S,Φ)| ≤
∫

|det g|=q−j

∣∣SU (g)
∣∣ |Φ∗ (g)| |det g|m+Re(s) dg.

Summing on j yields

∑

j∈Z

∣∣∣∣∣∣∣∣

∑

k,l
k+l=j

ak,l (S,Φ) q−ksq−ls

∣∣∣∣∣∣∣∣
≤
∫

G2m

∣∣SU (g)
∣∣ |Φ∗ (g)| |det g|m+Re(s) dg.

The integral
∫
G
SU (g) Φ∗ (g) · |det g|m+s dg is a local zeta integral of Godement and Jacquet,

and therefore by Theorem 3.4, it converges absolutely for Re (s) > rπ, where rπ is a real
number depending on π only, to an element of L

(
π, s+ 1

2

)
C [qs, q−s]. Finally, since the series

converges for Re (s) > rπ, we get

∑

j∈Z

∑

k,l∈Z
k+l=j

ak,l (S,Φ) q−ksq−ls =

∫

G2m

SU (g) Φ∗ (g) |det g|m+s dg,

and therefore the sum
∑

j∈Z
∑

k,l∈Z
k+l=j

ak,l (S,Φ) q−ksq−ls has a meromorphic continuation to

an element of L
(
π, s+ 1

2

)
C [qs, q−s]. �

Proposition 3.48. The sum I (S, s) =
∑

k∈Z ck (S) q−ks converges absolutely for Re (s) > rπ.
It equals to the sum

∑
j∈Z
∑

k,l∈Z
k+l=j

ak,l (S,Φ) q−ksq−ls.

Proof. We write for a �xed l ∈ Z,
∑

k∈Z bk,l (S, φ) q−ks =
∑

k∈Z bk−l,l (S, φ) q−(k−l)s. We have
seen that bk,l (S, φ) = 0, for l � 0 and l � 0 uniformly, with respect to k. A simple
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calculation shows

∑

l∈Z

∑

k∈Z
bk,l (S, φ) q−ksq−ls =

∑

k∈Z

(∑

l∈Z
bk−l,l (S, φ)

)
q−ks.

Substituting the de�nitions of bk−l,l (S, φ) and J (S, φ, a, b) and substituting (in the notations
of the de�nitions) a = a′b−1, |det a′| = q−k, we get that the sum

∑
l∈Z bk−l,l (S, φ) equals

∫

Gm

db

∫

|det a′|=q−k
da′
∫

Mm

dY

∫

GL2m(O)

dk0S

((
a′b−1

Im

)(
Im Y

Im

)(
Im

b

)
k0

)
φ (Y, b, k0) |det b|m .

Recalling that φ was chosen by Lemma 3.44, we get that
∑

l∈Z bk−l,l (S, φ) = ck (S) (See
Lemma 3.43).
Since ak,l (S,Φ) = bk,l (S, φ), we have

ck (S) q−ks =
∑

l∈Z
bk−l,l (S, φ) q−ks =

∑

l,l′∈Z
l+l′=k

al′,l (S, φ) q−lsq−l
′s.

The proposition now follows from Proposition 3.47. �
Corollary 3.49. The series I (S, s) =

∑
k∈Z ck (S) q−ks has a meromorphic continuation to

an element of L
(
π, s+ 1

2

)
C [qs, q−s], which we continue to denote I (S, s).

Proposition 3.50. Let π be an irreducible representation of G2m. Let L ∈ HomP2m∩S2m (π,Ψ),
v ∈ Vπ, s ∈ C. Then for Lv (g) = L (π (g) v) and p ∈ P2m ∩Mm,m one has

I
(
Lπ(p)v, s

)
= χ (p)s · I (Lv, s) ,

where χ : P2m∩Mm,m → C∗ is de�ned as χ (( g0 p0 )) =
∣∣det

(
p0 · g−1

0

)∣∣, for p0 ∈ Pm, g0 ∈ Gm.

Proof. One writes the de�nition of ck
(
Lπ(p)v

)
, for p = ( g0 p0 ), where g0 ∈ Gm, p0 ∈ Pm. By

conjugating with ( p0 p0 ) ∈ S2m ∩ P2m and substituting g = p0g
′g−1

0 |det g| = |det g′| · q−k0
where

∣∣det
(
p0g
−1
0

)∣∣ = q−k0 , one gets

ck
(
Lπ(p)v

)
= ck−k0 (Lv) .

Therefore for s ∈ C with Re (s) > rπ∑

k∈Z
ck
(
Lπ(p)v

)
q−ks = q−k0s

∑

k∈Z
ck (Lv) q

−ks,

as requested. By the uniqueness of the meromorphic continuation, this equality remains
valid for the meromorphic continuation of I (Lv, s) . �
Proposition 3.51. Let π be an irreducible supercuspidal representation of G2m. The vector
space HomP2m∩S2m (π,Ψ) embeds as a subspace of HomP2m∩Mm,m (π, 1).

Proof. As seen in Corollary 3.49, the series I (S, s) extends meromorphically to an element
of L

(
π, s+ 1

2

)
C [qs, q−s]. Since π is supercuspidal, L (π, s) ≡ 1 (Theorem 3.5), and therefore

I (S, s) is de�ned for every s ∈ C. Given L ∈ HomP2m∩S2m (π,Ψ) we de�ne Λ (L) by

Λ (L) (v) = I (Lv, 0) (v ∈ Vπ) .

We have shown that for p ∈ P2m ∩ Mm,m, we have I
(
Lπ(p)v, s

)
= χ (p)s · I (Lv, s), and

therefore Λ (L) (π (p) v) = Λ (L) (v), i.e. Λ (L) ∈ HomP2m∩Mm,m (π, 1). Λ is a linear map,
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since it is clear from the de�nition of I (S, s) that for a �xed s ∈ C with Re(s) > rπ, we have
that I (·, s) is linear.
We claim that Λ is injective. To show that we show that given L 6= 0, there exists a vector

v ∈ Vπ, such that Λ (L) (v) 6= 0.
Let L 6= 0 and let v0 ∈ Vπ, such that L (v0) 6= 0. By multiplying by a scalar, we may

assume L (v0) = 1. Given a Schwartz function η ∈ S (Mm), we de�ne the vector

v0,η =

∫

Mm

η (X) π

((
Im X

Im

))
v0 dX.

(since π is smooth, the integrand is a smooth function of X).
A simple computation shows

L

((
g

Im

)
v0,η

)
=

∫

Mm

η (x)ψ (tr (gX)) dX

︸ ︷︷ ︸
η̂(g)

·L
(
π

((
g

Im

))
v0

)
.

Since π is smooth, there exists an open compact subgroup of Gm, which we denoteKv0 ⊆ Gm,
such that π

((
k
Im

))
v0 = v0, for every k ∈ Kv0 . Since Gm ⊆ Mm is open, Kv0 ⊆ Mm is

open and compact. Furthermore, we may assume that Kv0 ⊆ GLm (O). Therefore we
have that the indicator function 1χKv0 ∈ S (Mm) is a Schwartz function on Mm. Since the
Fourier transform is a bijection from S (Mm) to itself, there exists η ∈ S (Mm) such that
η̂ = 1

µGm(Kv0)
1χKv0 . Choosing this η yields L ((

g
Im ) v0,η) = L (v0) · 1χKv0 (g), and therefore

for s > rπ we have

I
(
Lv0,η , s

)
=

1

µGm (Kv0)

∫

Kv0

L (v0)︸ ︷︷ ︸
=1

dg = 1.

Therefore we have shown that for every L 6= 0, there exists a vector v = v0,η, such that
I (Lv, s) ≡ 1, and therefore the meromorphic continuation I (Lv, s) satis�es Λ (L) (v) =
I (Lv, 0) = 1 6= 0. �
Corollary 3.52. Let π be an irreducible supercuspidal representation of G2m. Then

dim HomP2m∩S2m (π,Ψ) ≤ 1

Proof. Combine Theorem 3.37 and Proposition 3.51. �

3.5.3. Proof of the functional equation. We move to the proof of the functional equation
(Theorem 3.36).

Proof. We recall that for a �xed s ∈ C, the forms Jπ,ψ, J̃π,ψ are |det|− s2 ·Ψ equivariant bilinear

maps over S2m and therefore de�ne elements in HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)
. We show

that the dimension of HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)
is at most 1, for all values of q−s,

except for a �nite number of values.

We �rst show that HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)
is embedded as a subspace of

HomS2m

(
π ⊗ S0 (Fm) , |det|− s2 ·Ψ

)
, for all values of q−s, except for a �nite number of values.
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Here

S0 (Fm) = {f ∈ S (Fm) | f (0) = 0} .
Note that S0 (Fm) is an invariant subspace of S (Fm) as the kernel of the homomorphism
f 7→ f (0). We show that the restriction map

HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)
→HomS2m

(
π ⊗ S0 (Fm) , |det|− s2 ·Ψ

)
(3.13)

b 7→b �π⊗S0(Fm),

is injective. Suppose b 6= 0 is a bilinear |det|− s2 ·Ψ equivariant map, such that its restriction
to Vπ × S0 (Fm) is the zero map.

We de�ne a bilinear map b̃ : Vπ × S(Fm)/S0(Fm) → C by

b̃ (v, f + S0 (Fm)) = b (v, f) .

One easily checks that this map is well de�ned, as b is identically zero on Vπ ×S0 (Fm), and

that this map is also |det|− s2 ·Ψ-equivariant over S2m.
On the other hand, S(Fm)/S0(Fm)

∼= C with the trivial representation and therefore we have

b̃ (π (g) v, ρ (g) (f + S0 (Fm))) = b̃ (π (g) v, f + S0 (Fm)) .

Choosing g in the center of G, i.e. g = λIn ∈ S2m we have π (λIn) v = ωπ (λ) · v where ωπ is
the central character of π. Therefore we get

b̃ (π (λI2m) v, ρ (λI2m) f + S0 (Fm)) = |λ|−ms · b̃ (v, f + S0 (Fm)) ,

and on the other hand

b̃ (π (λI2m) v, ρ (λI2m) f + S0 (Fm)) = ωπ (λ) · b̃ (v, f + S0 (Fm)) .

Choosing values of v, f , such that b (v, f) 6= 0, and therefore b̃ (v, f + S0 (Fm)) 6= 0, yields

ωπ (λ) = |λ|−ms .
Substituting λ = $ yields ωπ ($) = qms. Since ωπ depends on π only, this equality can be

true only for at most m values of q−s (qs = ωπ ($)
1
m e

2πik
m , k ∈ {0, . . . ,m− 1}). Therefore,

we have shown that except for a �nite number of values of qs, the restriction map de�ned in
(3.13) is injective.
We consider the right action of S2m on row vectors Fm de�ned by

(a1, . . . , am) ·
(
g x

g

)
= (a1, . . . , am) g.

This action has exactly two orbits: {0} and Fm \ {0}. The stabilizer of the element ε =
(0, . . . , 0, 1) ∈ Fm consists of elements of the form ( g xg ) with g ∈ Pm, i.e.

stabS2m (ε) = S2m ∩ P2m.

We have the following homeomorphism S2m∩P2m\S2m ∼= Fm\{0}. Since S0 (Fm) ∼= S (Fm \ {0}),
we get using these identi�cations that

S0 (Fm) ∼= S
(
S2m∩P2m\S2m

) ∼= indS2m
S2m∩P2m

(1) ,
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and therefore we have the following isomorphisms:

HomS2m

(
π ⊗ S0 (Fm) , |det|− s2 ·Ψ

)
∼= HomS2m

(
π ⊗ indS2m

S2m∩P2m
(1) , |det|− s2 ·Ψ

)

= HomS2m

((
|det| s2 ·Ψ−1

)
· π ⊗ indS2m

S2m∩P2m
(1) , 1

)

∼= HomS2m

((
|det| s2 ·Ψ−1

)
· π, indS2m

S2m∩P2m
(1)

:)

∼= HomS2m

((
|det| s2 ·Ψ−1

)
· π, IndS2m

S2m∩P2m

(
δ
S2m∩P2m\S2m

))
.

Here δ
S2m∩P2m\S2m (p) =

δS2m∩P2m (p)

δS2m (p)
= |det p| 12 , for p ∈ S2m ∩ P2m, and we get

HomS2m

((
|det| s2 ·Ψ−1

)
· π, IndS2m

S2m∩P2m

(
|det| 12

))
= HomS2m∩P2m

((
|det| s2 ·Ψ−1

)
· π, |det| 12

)

= HomS2m∩P2m

(
|det| s−1

2 π,Ψ
)

By Corollary 3.52, HomS2m∩P2m

(
|det| s−1

2 π,Ψ
)
has dimension at most one, which implies

that so does HomS2m

(
π ⊗ S0 (Fm) , |det|− s2 ·Ψ

)
. Since HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)

is embedded as a subspace of HomS2m

(
π ⊗ S0 (Fm) , |det|− s2 ·Ψ

)
for all values of q−s except

for a �nite number of values, we get that for all values of q−s, except for a �nite number,

HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)
has dimension at most 1.

Recall that for a �xed value s ∈ C, Bs (W,φ) = Jπ,ψ (s,W, φ) and B̃s (W,φ) = J̃π,ψ (s,W, φ)

are bilinear |det|− s2 · Ψ-equivariant forms (Corollary 3.35), and therefore de�ne elements of

HomS2m

(
π ⊗ S (Fm) , |det|− s2 ·Ψ

)
. Therefore, for every value of q−s, except for a �nite

number of values, B̃s = γπ,ψ (s)Bs where γπ,ψ (s) ∈ C. Choosing W ∈ W (π, ψ) and φ ∈
S (Fm), such that Jπ,ψ (s,W, φ) = 1 for every s, implies γπ,ψ (s) = J̃π,ψ (s,W, φ), for every
value of q−s, except for a �nite number of values, which implies that γπ,ψ (s) is a rational
function in the variable q−s. For �xed W ∈ W (π, ψ) and φ ∈ S (Fm), both sides of the
equation J̃π,ψ (s,W, φ) = γπ,ψ (s) Jπ,ψ (s,W, φ) are rational functions in the variable q−s.
Since both sides agree for all but a �nite number of values of q−s, we get from the uniqueness
theorem that they agree for all values of q−s.

Finally, we write γπ,ψ (s) = επ,ψ (s) · L(1−s,π̃,∧2)
L(s,π,∧2)

where επ,ψ (s) ∈ C (q−s). We will show

επ,ψ (s) is an invertible element of C [qs, q−s]. We have the following equation:

J̃π,ψ (s,W, φ)

L (1− s, π̃,∧2)
= επ,ψ (s)

Jπ,ψ (s,W, φ)

L (s, π,∧2)
.

Since L (s, π,∧2) is the generator of the fractional ideal Iπ,ψ, there exists (Wi)
N
i=1 ⊆ W (π, ψ),

(φi)
N
i=1 ⊆ S (Fm), such that

∑N
i=1 Jπ,ψ (s,Wi, φi) = L (s, π,∧2). Substituting this in the equa-

tion yields επ,ψ (s) =
∑N

i=1
J̃π,ψ(s,Wi,φi)

L(1−s,π̃,∧2)
, which implies that επ,ψ is an element of C [qs, q−s].

Likewise, one can choose (W ′
i )
N ′

i=1 ⊆ W (π, ψ), (φ′i)
N ′

i=1 ⊆ S (Fm), such that
∑N ′

i=1 J̃π,ψ (s,W ′
i , φ
′
i) =

L (1− s, π̃,∧2). Substituting this in the equation yields ε−1
π,ψ (s) =

∑N ′

i=1

Jπ,ψ(s,W ′i ,φ′i)
L(s,π,∧2)

, which
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implies ε−1
π,ψ (s) ∈ C [qs, q−s]. Therefore επ,ψ (s) is an invertible element of C [qs, q−s], as

requested. �
Remark 3.53. The calculations done in Subsection 1.2.3 yield that for a ∈ F ∗,

γπ,ψa (s) = ωπ (a)2(m−1) |a|2m(m−1)(s− 1
2) γπ,ψ (s) ,

i.e. επ,ψa (s) = ωπ (a)2(m−1) |a|2m(m−1)(s− 1
2) επ,ψ (s).

3.6. Poles of the γ-factor, and Shalika functionals. Let π be an irreducible supercusp-
idal representation of GL2m (F ). In this subsection we relate between a pole of the γ-factor
of π and the existence of a Shalika functional. We begin with the following propositions
which will be useful later.

Lemma 3.54. Suppose that Jπ,ψ (s,W, φ) has a pole at s = 0 for some W ∈ W (π, ψ) and
φ ∈ S (Fm). Then ωπ ≡ 1.

Proof. Since π is supercuspidal, by Remark 3.33, Jπ,ψ (s,W, φ) ∈ L (ms, ωπ) · C [q−s, qs].
Since Jπ,ψ (s,W, φ) has a pole, this implies that ωπ is unrami�ed, and then L (ms, ωπ) =

1
1−ωπ($)q−ms . Since Jπ,ψ (s,W, φ) has a pole at s = 0, this implies ωπ ($) = 1, and therefore

ωπ ≡ 1. �
De�nition 3.55. Suppose that ωπ ≡ 1. We denote

lπ,ψ (W ) =

∫

ZN\G

(∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX

)
dg.

This integral converges due to Proposition 3.28.

Proposition 3.56. Suppose that ωπ ≡ 1. Then for any W ∈ W (π, ψ) and φ ∈ S (Fm)

lim
s→0

(
1− q−ms

)
Jπ (s,W, φ) = φ (0) · lπ,ψ (W )

Proof. We �rst consider two special cases.
If φ (0) = 0, then by Remark 3.33, Jπ,ψ (s,W, φ) ∈ C [q−s, qs], and therefore

lim
s→0

(
1− q−ms

)
Jπ (s,W, φ) = 0.

If φ = 1χOm , we have that Jπ,ψ (s,W, φ) is equal to
∫

Am−1

da′
∫

K

dk

∫

B\M
dX

(
δ−1
B (a′)W

(
wm,m

(
Im X

Im

)(
a′k

a′k

))
ψ (−trX)

)
|det (a′)|s

·
∫

F ∗
1χOm (εamk)ωπ (am)︸ ︷︷ ︸

=1

|am|ms dam.

Since εamk ∈ Om ⇐⇒ |am| ≤ 1, we get that
∫

F ∗
1χOm (εamk) |am|ms dam =

∞∑

i=0

∫

$iO∗
|am|ms dam =

1

1− q−ms .

Therefore, we get that the limit lims→0 (1− q−ms) Jπ,ψ (s,W, φ) is equal to
∫

Am−1

da′
∫

K

dk

∫

B\M
dX

(
δ−1
B (a′)W

(
wm,m

(
Im X

Im

)(
a′k

a′k

))
ψ (−trX)

)
.
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(Note that this value is �nite by Proposition 3.28).
By the Iwasawa decomposition, this equals lπ,ψ (W ).
We move to the general case. Let φ ∈ S (Fm). Write φ = φ′ + φ (0) · 1χOm , where

φ′ ∈ S (Fm) with φ′ (0) = 0. Then

Jπ,ψ (s,W, φ) = Jπ,ψ (s,W, φ′) + φ (0) Jπ,ψ (s,W, 1χOm) ,

and from the previous two cases:

lim
s→0

(
1− q−ms

)
Jπ,ψ (s,W, φ) = 0 + φ (0) lπ,ψ (W ) .

�

Corollary 3.57. Let W ∈ W (π, ψ) and φ ∈ S (Fm). Then Jπ,ψ (s,W, φ) has a pole at s = 0
if and only if ωπ ≡ 1 and φ (0) lπ,ψ (W ) 6= 0.

Proof. First note that lims→0
s

1−q−ms = 1
m log q

6= 0 and therefore Jπ,ψ (s,W, φ) has a pole at

s = 0 if and only if lims→0 (1− q−ms) Jπ,ψ (s,W, φ) 6= 0. The corollary now follows from
Lemma 3.54 and Proposition 3.56. �

Corollary 3.58. L (s, π,∧2) has a pole at s = 0 if and only if ωπ ≡ 1 and there exists
W ∈ W (π, ψ), such that lπ,ψ (W ) 6= 0.

Proof. L (s, π,∧2) has a pole at s = 0 if and only if one of the functions Jπ,ψ (s,W, φ) has a
pole at s = 0. The corollary now follows from the previous corollary. �

Theorem 3.59. γπ,ψ (s) has a pole at s = 1 if and only if ωπ ≡ 1 and there exists W ∈
W (π, ψ), such that lπ,ψ (W ) 6= 0.

Proof. Suppose that γπ,ψ (s) has a pole at s = 1. According to Theorem 3.31, there exists
W ∈ W (π, ψ) and φ ∈ S (Fm), such that Jπ,ψ (s,W, φ) = 1. We substitute such W and

φ in the functional equation to get γπ,ψ (s) = J̃π,ψ (s,W, φ). Recalling the de�nition of

J̃π,ψ (s,W, φ) = Jπ̃,θ−1

(
1− s,W ′, φ̂

)
where W ′ ∈ W (π̃, ψ−1) is de�ned by

W ′ (g) = π̃

((
Im

Im

))
W̃ (g) = W

(
w2mg

l

(
Im

Im

))
.

We get that Jπ̃,θ−1

(
s,W ′, φ̂

)
has a pole at s = 0. According to Proposition 3.56 this implies

that ωπ̃ ≡ 1 and φ̂ (0) lπ̃,ψ−1 (W ′) 6= 0, which implies that

lπ̃,ψ−1 (W ′) =

∫

ZN\G

(∫

B\M
W

(
w2mw

l
m,m

(
Im X

Im

)l(
g

g

)l(
Im

Im

))
ψ−1 (−tr (X)) dX

)
dg 6= 0.

Using the fact that w2m and wm,m commute, and the same conjugation techniques as in
Subsection 1.2.1, we get that lπ̃,ψ−1 (W ′) = lπ,ψ (W ), and this direction is proved.
For the other direction, suppose that ωπ̃ ≡ 1, and that there exists W ∈ W (π, ψ), such

that lπ,ψ (W ) 6= 0. Again, we get that 0 6= lπ̃,ψ−1 (W ′) = lπ,ψ (W ), where W ′ is de�ned as
above. Since Iπ,ψ ⊆ L (ms, ωπ)C [q−s, qs], we have L (s, π,∧2) = 1

p1(q−s) , L (s, π̃,∧2) = 1
p2(q−s) ,

where p1 (z) , p2 (z) ∈ C [z] are such that p1 (0) = p2 (0) = 1, p1 (z) , p2 (z) | 1− zm, and such
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that 1 − z | p1 (z) , p2 (z) (as L (s, π,∧2), L (s, π̃,∧2) have poles at s = 0 from the previous
corollary) and therefore

γπ,ψ (s) = επ,ψ (s) · p1 (q−s)

p2 (q−(1−s))
,

where επ,ψ (s) = c · qks, c ∈ C∗, k ∈ Z.
Since p1 (q−1) 6= 0 and p2 (1) = 0, it is clear that γπ,ψ has a pole at s = 1. �

De�nition 3.60. A functional l : W (π, ψ) → C is called a Shalika functional if for every
W ∈ W (π, ψ) and

(
g X
g

)
∈ S2m, one has l

(
π
(
g X
g

)
W
)

= ψ (tr (g−1X)) l (W ).

Proposition 3.61. Suppose that ωπ ≡ 1, then the functional lπ,ψ de�ned above is a Shalika
functional.

Proof. This follows directly by changing variables in the integral de�ning lπ,ψ, just as in the
proof of the equivariance properties of Jπ,ψ (Proposition 1.10). �
We conclude this subsection with a theorem.

Theorem 3.62. Let π be an irreducible supercuspidal representation of GL2m (F ). The
following are equivalent:

(1) ωπ ≡ 1 and lπ,ψ 6≡ 0.
(2) γπ,ψ (s) has a pole at s = 1.
(3) L (s, π,∧2) has a pole at s = 0.

3.7. The local exterior square L function for supercuspidal representations. Let
π be an irreducible supercuspidal representation of GL2m (F ). In this subsection, we give an
explicit expression for L (s, π,∧2) (See Remark 3.31 for the de�nition).

Proposition 3.63. Suppose that ωπ is rami�ed, i.e. ωπ �O∗ 6≡ 1. Then L (s, π,∧2) = 1.

Proof. The inclusion Iπ,ψ ⊇ C [q−s, qs] is always true (Theorem 3.31).
Regarding the inclusion Iπ,ψ ⊆ C [q−s, qs], from Remark 3.33, we have Iπ,ψ ⊆ L (ms, ωπ)C [q−s, qs].

Since ωπ is unrami�ed, it follows from Theorem 3.3 that L (ms, ωπ) = 1, and the proposition
follows. �
Proposition 3.64. Suppose that ωπ ≡ 1. Let ζ = e

2πi
m . Then

L
(
s, π,∧2

)
=
∏

k∈Sπ,ψ

1

1− ζkq−s ,

where

Sπ,ψ =
{

0 ≤ k ≤ m− 1 | ∃W ∈ W (π, ψ) ,
∫

ZN\G

(∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX

)
|det g| 2πik

m log q dg 6= 0
}
.

Proof. Since Jπ,ψ

(
s+ 2πik

m log q
,W, φ

)
= J

π·|det|
πik

m log q ,ψ
(s,W, φ), we get from Proposition 3.57,

that Jπ,ψ

(
s+ 2πik

m log q
,W, φ

)
has a pole at s = 0, if and only if there exists W ∈ W (π, ψ),

such that l
π·|det|

πik
m log q ,ψ

(W ) 6= 0. This is equivalent to k ∈ Sπ,ψ.
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Since L (s, π,∧2) = 1
p(q−s) , where p (z) | (1− zm) (since Iπ,ψ ⊆ L (ms, ωπ)C [q−s, qs]), we

get that p (z) =
∏

k∈Sπ,ψ
(
1− ζkz

)
, as required. �

We now move to the case where ωπ is an unrami�ed character. Suppose that ωπ is a
general unrami�ed character. For z ∈ F ∗ write z = $k · u, where |u| = 1, k ∈ Z. Then,

ωπ (z) = ωπ ($)k. Therefore, we can write ωπ (z) = |z|s0 , where s0 = logωπ($)
log q

. Consider the

representation π′ = π · |det|−
s0
2m . π′ is irreducible and supercuspidal with a trivial central

character. Therefore, from Proposition 3.64,

L
(
s, π′,∧2

)
=

∏

k∈Sπ′,ψ

1

1− ζkq−s .

As in the proof of Theorem 3.23, Jπ′,ψ
(
s+ s0

m
,W, φ

)
= Jπ,ψ (s,W, φ), and therefore it follows

that L
(
s+ s0

m
, π′,∧2

)
= L (s, π,∧2). Therefore

L
(
s, π,∧2

)
=
∏

k∈Sπ,ψ

1

1− ωπ ($)
1
m ζkq−s

,

where

Sπ,ψ =
{

0 ≤ k ≤ m− 1 | ∃W ∈ W (π, ψ) ,
∫

ZN\G

(∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX

)
|det g|

2πik−logωπ($)
m log q dg 6= 0

}
.

Theorem 3.65. Let π be an irreducible supercuspidal representation of GL2m (F ). If ωπ is
rami�ed, then L (s, π,∧2) = L (ms, ωπ) = 1. If ωπ is unrami�ed then

L
(
s, π,∧2

)
=
∏

k∈Sπ,ψ

1

1− ωπ ($)
1
m ζkq−s

,

where

Sπ,ψ =
{

0 ≤ k ≤ m− 1 | ∃W ∈ W (π, ψ) ,
∫

ZN\G

(∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX

)
|det g|

2πik−logωπ($)
m log q dg 6= 0

}
.

75



4. Level zero representations

Towards this section, F is again a p-adic �eld with absolute value |·|, O denotes the ring
of integers of F , P denotes the unique prime ideal of O, $ is a uniformizer of O (a generator
of P), q =

∣∣O/P
∣∣. Then O/P ∼= Fq.

We denote by ν the quotient map ν : O → Fq. ν de�nes a homomorphism ν : GLn (O)→
GLn (Fq).

4.1. Preliminaries.

4.1.1. Level zero representations. Let n be a positive integer.
Let (π0, V0) be an irreducible cuspidal representation of GLn (Fq). We describe a method

to construct an irreducible supercuspidal representation (π, V ) of GLn (F ).
Using ν and π0, we can de�ne a representation (π′0, V0) of GLn (O) by π′0 (k) = π0 (ν (k)),

for k ∈ GLn (O).
Let χ : F ∗ → C∗ be a character of F ∗, such that χ �O∗= ωπ0 ◦ ν �O∗ , where ωπ0 is the

central character of π0. Such characters exist: using the decomposition F ∗ = 〈$〉 ×O∗, one
sees that such characters are exactly the characters of the form χz0

(
$k · u

)
= zk0 ·ωπ0 (ν (u)),

where z0 ∈ C∗ (u ∈ O∗, k ∈ Z).
We de�ne a representation (χπ′0, V0) of F ∗ · GLn (O) by (χπ′0) (z · k) = χ (z) · π0 (ν (k)),

where z ∈ F ∗ and k ∈ GLn (O). It is easy to check that χπ′0 is well de�ned. Since GLn (O) is
an open subgroup, it follows that F ∗·GLn (O) is an open subgroup, and therefore F ∗·GLn (O)
is also a closed subgroup.

We de�ne (π, V ) = ind
GLn(F )
F ∗·GLn(O) (χπ′0).

Theorem 4.1. (π, V ) is an irreducible supercuspidal representation of GLn (F ). [PR08,
Theorem 6.2]

Representations obtained through this method are called irreducible level zero (or depth
zero) supercuspidal representations of GLn (F ).

4.1.2. Whittaker model lift. Let (π0, V0) be an irreducible cuspidal representation of GLn (Fq),
and let (π, V ) be a level zero representation, constructed through π0, with respect to the
character χ : F ∗ → C∗. In this subsection, we relate between the Whittaker models of π and
π0.
Let ψ : F → C∗ be a non-trivial character, such that its conductor is P (i.e. ψ �P≡ 1

and ψ �O 6≡ 1). We denote by ψ0 : Fq → C∗ the character de�ned by ψ0 (x0) = ψ (x), where
x0 ∈ Fq and x ∈ O with ν (x) = x0. ψ0 is well de�ned, as ψ �P≡ 1, and ψ0 is non-trivial, as
ψ �O 6≡ 1.
As noted in Subsection 1.1.1, π0 is generic.
Let 0 6= T0 ∈ HomNn(Fq)

(
π0 �Nn(Fq), ψ0

)
be a non-zero Whittaker functional of π0 with

respect to ψ0.
We give a description of the Whittaker model W (π, ψ) using T0.
We start with a useful Lemma:

Lemma 4.2. Nn ∩ (F ∗ ·GLn (O)) = Nn (O), where Nn ⊆ GLn (F ) is the upper triangular
unipotent matrix subgroup and Nn (O) = Nn ∩GLn (O).
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Proof. For the inclusion Nn∩(F ∗ ·GLn (O)) ⊆ Nn (O), suppose that u = z ·k, where u ∈ Nn,
z ∈ F ∗ and k ∈ GLn (O). Taking the determinant of both sides yields |z|n = 1, and therefore
|z| = 1, which implies z ∈ O∗. Therefore u ∈ GLn (O) ∩Nn = Nn (O).
The other inclusion is trivial. �

Theorem 4.3. The functional T : V → C de�ned by

〈T, f〉 =

∫

Nn(O)\Nn
ψ−1 (u) 〈T0, f (u)〉 du (f ∈ V )

is a non-zero Whittaker functional T ∈ HomNn (π �Nn , ψ).

Proof. The integrand is well de�ned: for k ∈ Nn (O), f (ku) = π0 (ν (k)) f (u), and therefore
ψ−1 (ku) 〈T0, f (ku)〉 = ψ−1 (ku)ψ0 (ν (k))︸ ︷︷ ︸

ψ(k)

〈T0, f (u)〉.

The integral converges: since f ∈ ind
GLn(F )
F ∗·GLn(O) (χπ0), there exists a compact subset C ⊆

GLn (F ), such that suppf ⊆ (F ∗ ·GLn (O))·C. Therefore the integral is integrated on cosets
of the form Nn (O)u, where u ∈ Nn ∩ (F ∗ ·GLn (O) · C). Suppose that u = zkc, where
u ∈ Nn (F ), z ∈ F ∗, k ∈ GLn (O) and c ∈ C. Then zIn = uc−1k−1 ∈ Nn ·C−1 ·GLn (O). By
comparing determinants we get that zn ∈ det (C−1) · O∗, and therefore |z|n ∈ |det (C−1)|.
C−1 is compact, and therefore |z| is bounded, i.e. z belongs to a compact set CZ ⊆ F ∗, and
u ∈ CZ · GLn (O) · C belongs to a compact set. Therefore, the integral is integrated on a
compact subset of Nn(O)\Nn , and therefore converges.
It is clear by its de�nition that T ∈ HomNn (π �Nn , ψ). We show it is not identically zero.
Let v0 ∈ V0 such that 〈T0, v0〉 6= 0. We de�ne fv0 ∈ V by

fv0 (g) =

{
χ (z) π0 (ν (k)) v0 g = zk, z ∈ F ∗, k ∈ GLn (O)

0 otherwise
,

then fv0 ∈ ind
GLn(F )
F ∗·GLn(O) (χ · π′0). We have

〈T, fv0〉 =

∫

Nn(O)\Nn
ψ−1 (u) 〈T0, fv0 (u)〉 du,

and u is integrated only on cosets of the form Nn ∩ (F ∗ ·GLn (O)) = Nn (O). This implies
that the value of the integral equals 〈T0, fv0 (In)〉 = 〈T0, v0〉 6= 0. �
We now express the Whittaker model W (π, ψ) using Frobenius reciprocity: for f ∈ V we

denote by Wf : GLn (F )→ C the function Wf (g) = 〈T, π (g) f〉. Then
W (π, ψ) = {Wf | f ∈ V } .

We also denote for v0 ∈ V0 the function W 0
v0

: GLn (Fq) → C, de�ned by W 0
v0

(g) =
〈T0, π0 (g) v0〉. Then

W (π0, ψ0) =
{
W 0
v0
| v0 ∈ V0

}
.

We will be interested in elements of the form Wf for f = fv0 , for v0 ∈ V0, as above:

fv0 (g) =

{
χ (z) π0 (ν (k)) v0 g = zk, z ∈ F ∗, k ∈ GLn (O)

0 otherwise
.
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It is clear that fv0 ∈ ind
GLn(F )
F ∗·GLn(O) (χ · π′0). We denote Wfv0

= Wv0 .

Proposition 4.4. suppWv0 ⊆ Nn · F ∗ · GLn (O). For u0 ∈ Nn, z ∈ F ∗, k ∈ GLn (O) we
have

Wv0 (u0zk) = ψ (u0)χ (z)W 0
v0

(ν (k)) .

Proof. We write

Wv0 (g) =

∫

Nn(O)\Nn
ψ−1 (u) 〈T0, fv0 (ug)〉 du.

Suppose that g ∈ suppWv0 . Then u0g ∈ suppfv0 = F ∗ · GLn (O), for some u0 ∈ Nn. It is
now clear that g ∈ Nn · F ∗ ·GLn (O).
Let z ∈ F ∗ and k ∈ GLn (O). Then

Wv0 (zk) = χ (z)

∫

Nn(O)\Nn
ψ−1 (u) 〈T0, fv0 (uk)〉 du.

Suppose that u ∈ Nn such that uk ∈ suppfv0 = F ∗·GLn (O). Then u ∈ (F ∗ ·GLn (O))∩Nn =
Nn (O). Therefore the integral is integrated on the single coset In, and results with the value

Wv0 (zk) = χ (z) 〈T0, π0 (ν (k)) v0〉︸ ︷︷ ︸
W 0
v0

(ν(k))

.

Since Wv0 ∈ W (π, ψ), we have Wv0 (u0zk) = ψ (u0)Wv0 (zk), and we get the required result.
�

4.1.3. Lifted Schwartz functions. We will be interested in Schwartz functions obtained in the
following fashion: Let φ be a function φ : Fmq → C. We de�ne a function on Fm, denoted by
Fφ by

Fφ (x) =

{
φ (ν (x)) x ∈ Om
0 x /∈ Om .

It is clear that Fφ is a Schwartz function which is invariant to translations of Pm.
Fix a non-trivial character ψF : F → C∗ whose conductor is P .

Proposition 4.5. Let F̂φ be the Fourier transform of Fφ with respect to ψF , de�ned as

F̂φ (y) =
∫
Fm

Fφ (x)ψF (〈x, y〉) dx. Then

F̂φ (y) = Fφ̂ (y) ,

where φ̂ (x) = 1
qm

∑
a∈Fmq φ (a)ψF0 (〈a, x〉).

Proof. We begin with some properties of the Fourier transform: for a Schwartz function
f : Fm → C and a ∈ Fm, b ∈ F ∗, we denote fa,b (x) = f (a+ bx). A direct computation
shows that

f̂a,b (y) =
1

|b|mψ
F
(〈
−a
b
, y
〉)

f̂
(y
b

)
.
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Next we compute the Fourier transform of 1χOm :

1̂χOm (y) =

∫

Om
ψF (〈x, y〉) dx.

For y ∈ Om − Pm, the character x 7→ ψF (〈x, y〉) is non-trivial (since the conductor of ψ

is P), and therefore 1̂χO (y) = 0 for such y. For y ∈ Pm, the character x 7→ ψF (〈x, y〉) is

trivial, and therefore 1̂χO (y) = 1 for such y. Therefore we have 1̂χOm (y) = 1χPm (y).
Finally, let φ : Fmq → C. Then Fφ =

∑
a∈Fmq 1χa′+Pm · φ (a) where for every a ∈ Fmq ,

a′ ∈ Om is an element, such that ν (a′) = a. A direct computation shows that

1χa′+Pm = (1χOm)−a′
$
, 1
$
.

Therefore

Fφ =
∑

a∈Fmq

φ (a) · (1χOm)−a′
$
, 1
$
.

Applying the above properties of the Fourier transform, we get

F̂φ (y) =
∑

a∈Fmq

φ (a) · 1

|$−1|mψ
F (〈a′, y〉) 1χPm ($y) .

Since |$−1| = q and 1χPm ($y) = 1χOm (y), we get that

F̂φ (y) =
1

qm

∑

a∈Fmq

φ (a)ψF (〈a′, y〉) 1χOm (y) .

For y /∈ Om, we have that F̂φ (y) = 0. Suppose y ∈ Om, then since ψF �P≡ 1, we have

ψF (〈a′, y〉) = ψF0 (〈a, ν (y)〉), and therefore F̂φ (y) = φ̂ (ν (y)). We conclude that F̂φ = Fφ̂,
as required. �

4.2. The Jacquet Shalika integral of a level zero supercuspidal representation. Let
m be a positive integer. Let (π0, V0) be an irreducible cuspidal representation of GL2m (Fq),
and let (π, V ) be a level zero representation, constructed through π0, with respect to the
central character χ : F ∗ → C. In this subsection, we relate between the integrals Jπ0,ψ0 and
Jπ,ψ.

Remark 4.6. Suppose that π′ is the level zero representation, constructed through π0, with
respect to the central character χ′, which is obtained by de�ning χ′ ($) = 1. Let s0 ∈ C,
such that χ ($) = q−s0 . Then π = π′ · |det|

s0
2m , and for every s ∈ C, v ∈ V0, φ ∈ S

(
Fmq
)
, we

have

Jπ,ψ (s,Wv, Fφ) = Jπ′,ψ

(
s+

s0

m
,Wv, Fφ

)
,

J̃π,ψ (s,Wv, Fφ) = J̃π′,ψ

(
s+

s0

m
,Wv, Fφ

)
,

i.e. the choice of χ ($) only a�ects Jπ,ψ, J̃π,ψ (and therefore also γπ,ψ, επ,ψ, L (s, π,∧2),
L (1− s, π̃,∧2)) by a translation by s0

m
.
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Proposition 4.7. There exists a choice of the Haar measures µB(F )\Mm(F ), µ
Nm(F )\GLm(F ),

such that for any φ : Fmq → C and v ∈ V0, one has

Jπ,ψ (s,Wv, Fφ) = Jπ0,ψ0

(
W 0
v , φ
)

+ Jπ0,ψ0

(
W 0
v , 1
)
· φ (0)χ ($) · q−ms

1− χ ($) · q−ms .

Proof. Using the same steps as in the proof of Theorem 3.23, we have

Jπ,ψ (s,Wv, Fφ) =

∫

Am−1

da′
∫

K

dk

∫

N−
dX

(
δ−1
B (a′)Wv

(
wm,m

(
Im X

Im

)(
a′k

a′k

)))
|det (a′)|s ·

(4.1)

·
∫

F ∗
Fφ (εamk) |am|ms ωπ (am) dam.

We will show that a′ is integrated on (O∗)m−1, and that X is integrated on N− ∩Mm (O).
Then we will be able to use Proposition 4.4.
Continuing, following the steps of Theorem 3.23, we get that

Jπ,ψ (s,Wv, Fφ) =

∫

Am−1

da′
∫

K

dk

∫

N−
dZ

(
δ−2
B (a′)ψ

(
bnZb

−1
)
Wv

(
btZkZwm,m

(
k

k

)))
|det (a′)|s

·
∫

F ∗
Fφ (εamk) |am|ms ωπ (am) dam,

where Z = a′−1Xa′, b = diag
(
a′1, a

′
1, a
′
2, a
′
2, . . . , a

′
m−1, a

′
m−1, 1, 1

)
, uZ =

(
Im Z

Im

)
and uZ =

nZtZkZ is an Iwasawa decomposition of uZ as in Proposition 3.22.
Suppose that btZkZwm,m ( k k ) ∈ suppWv, then by Proposition 4.4, btZkZwm,m ( k k ) ∈

N2m · F ∗ ·K2m (where N2m ⊆ GLm (F ) is the upper triangular unipotent matrix subgroup
and K2m = GL2m (O)), and therefore btZ = u (λI2m) k, where u ∈ N2m, λ ∈ F ∗ and k ∈ K2m.
The equality u−1btZ (λ−1I2m) = k implies that k is an upper triangular matrix, and therefore
all of its diagonal elements are of absolute value one. Since the last diagonal element of
both b and tZ equals 1, this implies that |λ| = 1. Therefore the diagonal of u (λI2m) k
consists of elements having absolute value one, and thus so does the diagonal of btZ . Writing
t = diag (t1, t2, . . . t2m−1, 1), we get that |a′i · t2i−1| = 1 and |a′i · t2i| = 1 for 1 ≤ i ≤ m − 1
and |t2i−1| = 1. Therefore |t2i| = |t2i−1| for 1 ≤ i ≤ m − 1. By Theorem 3.15, |t2i| ≤ 1 and
|t2i−1| ≥ 1, and therefore we get that |ti| = 1, for every 1 ≤ i ≤ 2m− 1, which implies that

|a′i| = 1, for every 1 ≤ i ≤ 2m− 1. By Proposition 3.21, we have ‖Z‖ 1
2m ≤∏1≤i≤2m

i is odd

|ti| = 1,

and therefore Z ∈Mm (O). This implies that X = a′Za′−1 ∈Mm (O).
We therefore have that a′ is integrated on (O∗)m−1, and that X is integrated on N− (O),

where (O∗)m−1 is realized with the diagonal matrices consisting of elements from O∗, and
N− (O) is the lower triangular nilpotent matrix subgroup of Mm (O). Since a′ ∈ (O∗)m−1,
δ−1
B (a′) = 1. Replacing k = a′−1k′ in (4.1) yields

Jπ,ψ (s,Wv, Fφ) =

∫

(O∗)m−1
da′
∫

K

dk′
∫

N−(O)

dX

(
Wv

(
wm,m

(
Im X

Im

)(
k′

k′

)))
·

·
∫

F ∗
Fφ
(
εam

(
a′−1k′

))
|am|ms χ (am) dam.
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Note that since a′−1 ∈ Am−1, its last row equals ε, and therefore εama
′−1k′ = εamk, and we

are left with the following integral:

Jπ,ψ (s,Wv, Fφ) =

∫

K

dk′
∫

N−(O)

dX

(
Wv

(
wm,m

(
Im X

Im

)(
k′

k′

)))
·

·
∫

F ∗
Fφ (εamk

′) |am|ms χ (am) dam.

We consider the following integral for a �xed k′ ∈ GLm (O)

∫

F ∗
Fφ (εamk

′) |am|ms χ (am) dam =
∞∑

i=−∞
χ ($)i q−ims

∫

O∗
Fφ
(
ε$iamk

′)χ (am) dam.

For i < 0, ε$iamk
′ /∈ Om for any am ∈ O∗, and therefore Fφ (ε$iamk

′) = 0. For i ≥ 1,
ε$iamk

′ ∈ Pm, and therefore Fφ (ε$iamk
′) = φ (0) and

∞∑

i=1

χ ($)i q−ims
∫

O∗
Fφ
(
ε$iamk

′)χ (am) dam =
φ (0)χ ($) · q−ms
1− χ ($) · q−ms

∫

O∗
χ (am) dam.

Regarding i = 0: the function Fφ (εamk
′)χ (am) of the variable am is constant on cosets of

1 +$O, and therefore
∫

O∗
Fφ (εamk

′)χ (am) dam =

∫

(1+$O)\O∗
Fφ (εak′)χ (a) da

Since (1+$O)\O∗ ∼= F∗q by ν we get
∫

O∗
Fφ (εamk

′)χ (am) dam =
1∣∣F∗q
∣∣
∑

a∈F∗q

φ (εa · ν (k′))ωπ0 (a) .

Therefore, we are left with the integral

Jπ,ψ (s,Wv, Fφ) =

∫

K

dk′
∫

N−(O)

dX

(
Wv

(
wm,m

(
Im X

Im

)(
k′

k′

)))
·


 1∣∣F∗q

∣∣
∑

a∈F∗q

φ (εa · ν (k′))ωπ0 (a) +
φ (0)χ ($) · q−ms
1− χ ($) · q−ms

∫

O∗
χ (am) dam


 .

Since Wv �GL2m(O)= W 0
v ◦ ν, the integrand is constant in the variable k′ on cosets of

(Im+$Mm(O))\GLm(O), and is constant in the variable X on cosets of $N−(O)\N−(O), and there-
fore

Jπ,ψ (s,Wv, Fφ) =

∫

(Im+$Mm(O))\GLm(O)

dk′
∫

$N−(O)\N
−(O)

dX

(
Wv

(
wm,m

(
Im X

Im

)(
k′

k′

)))
·


 1∣∣F∗q

∣∣
∑

a∈F∗q

φ (εa · ν (k′))ωπ0 (a) +
φ (0)χ ($) · q−ms
1− χ ($) · q−ms

∫

O∗
χ (am) dam


 .
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Since we have the following isomorphisms (by the map ν):

(Im+$Mm(O))\GLm(O) ∼= GLm (Fq) ,

$N−(O)\N
−(O) ∼= N− (Fq) ,

we get

Jπ,ψ (s,Wv, Fφ) =
1

|GLm (Fq)|
1

|N− (Fq)|
∑

k′∈GLm(Fq)

∑

X∈N−(Fq)

(
W 0
v

(
wm,m

(
Im X

Im

)(
k′

k′

)))
·


 1∣∣F∗q

∣∣
∑

a∈F∗q

φ (εa · k′)ωπ0 (a) +
φ (0)χ ($) · q−ms
1− χ ($) · q−ms

∫

O∗
χ (am) dam


 .

Note that for a �xed X ∈ N− (Fq), replacing ak′ with k′, and using the fact that ωπ0 is the
central character of π0 yields

1∣∣F∗q
∣∣
∑

a∈F∗q

∑

k′∈GLm(Fq)

(
W 0
v

(
wm,m

(
Im X

Im

)(
k′

k′

)))
φ (εa · k′)ωπ0 (a) =

∑

k′∈GLm(Fq)

(
W 0
v

(
wm,m

(
Im X

Im

)(
k′

k′

)))
φ (εk′) .

For X ∈ N− (Fq), we have trX = 0 and therefore

Jπ,ψ (s,Wv, Fφ) =
1

|GLm (Fq)|
1

|N− (Fq)|
∑

k′∈GLm(Fq)

∑

X∈N−(Fq)

(
W 0
v

(
wm,m

(
Im X

Im

)(
k′

k′

)))
·

· ψ0 (−trX) ·
(
φ (εk′) +

φ (0)χ ($) · q−ms
1− χ ($) · q−ms

∫

O∗
χ (am) dam

)
,

We have shown that this summand is constant in the variable k′ on cosets of Nm(Fq)\GLm(Fq)

and constant in the variable X on cosets of B(Fq)\Mm(Fq) ∼= N− (Fq) (Proposition 1.8). Using
these observations, we get

Jπ,ψ (s,Wv, Fφ) = Jπ0,ψ0

(
W 0
v , φ
)

+ Jπ0,ψ0

(
W 0
v , 1
)
· φ (0)χ ($) · q−ms

1− χ ($) · q−ms
∫

O∗
χ (am) dam.

Finally, notice that if Jπ0,ψ0 (W 0
v , 1) 6= 0, for some v ∈ V0, then W

0
v de�nes a Shalika vector

(See also Proposition 2.13), and therefore ωπ0 ≡ 1 and
∫
O∗ χ (am) dam = 1. Otherwise,

Jπ0,ψ0 (W 0
v , 1) = 0, for every v ∈ V0. In both cases we get that

Jπ,ψ (s,Wv, Fφ) = Jπ0,ψ0

(
W 0
v , φ
)

+ Jπ0,ψ0

(
W 0
v , 1
)
· φ (0)χ ($) · q−ms

1− χ ($) · q−ms ,

as required. �
Repeating the same steps for the expression

J̃π,ψ (s,Wv, φ) =

∫

N\G

∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dX · φ̂

(
ε1g

l
)
|det g|s−1 dg,

with the same Haar measures, and using the fact that F̂φ = Fφ̂ yields
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Proposition 4.8. For any φ : Fmq → C and v ∈ V0 one has

J̃π,ψ (s,Wv, Fφ) = J̃π0,ψ0

(
W 0
v , φ
)

+ Jπ0,ψ0

(
W 0
v , 1
)
· φ̂ (0)χ−1 ($) · q−m(1−s)

1− χ−1 ($) · q−m(1−s) .

Proof. We specify only the modi�cations that need to be done for the dual Jacquet-Shalika
integral. One begins with

J̃π,ψ (s,Wv, Fφ) =

∫

Am−1

da′
∫

K

dk

∫

N−
dX

(
δ−1
B (a′)Wv

(
wm,m

(
Im X

Im

)(
a′k

a′k

)))
|det (a′)|s−1 ·

·
∫

F ∗
Fφ̂
(
ε1a
−1
1 kl

)
|a1|m(1−s) ω−1

π (a1) da1.

This expression is obtained by beginning with the Iwasawa decomposition and substituting
a = a−1

1 · a′, where this time we think of Am−1 ⊆ Am by the embedding diag (a′2, . . . , a
′
m) 7→

diag (1, a′2, , . . . , a
′
m). Proceeding using the same steps as in the proof of Theorem 3.23, we

arrive to the expression

J̃π,ψ (s,Wv, Fφ) =

∫

Am−1

da′
∫

K

dk

∫

N−
dZ

(
δ−2
B (a′)ψ

(
bnZb

−1
)
Wv

(
btZkZwm,m

(
k

k

)))
|det (a′)|s−1 ·

·
∫

F ∗
Fφ̂
(
ε1a
−1
1 kl

)
|a1|m(1−s) ω−1

π (a1) da1,

where Z = a′−1Xa′, b = diag
(
1, 1, a′2, a

′
2, . . . , a

′
m−1, a

′
m−1, a

′
m, a

′
m

)
, uZ =

(
Im Z

Im

)
and uZ =

nZtZkZ is an Iwasawa decomposition of uZ as in Proposition 3.22.
One proceeds as in the previous proof, but this time uses the fact that if tZ = diag (t1, t2, . . . , t2m−1, t2m),

then |t1| = 1 (Theorem 3.15).
After showing that the integral is integrated on a′ ∈ (O∗)m−1, Z ∈ N− (O), one notices

that ε1a
−1
1 (a′−1)

l
(k′)l = ε1a

−1
1 (k′)l, as the �rst row of a′ is ε1.

The rest of the proof is similar to the previous proof. �

Corollary 4.9. Suppose that π0 does not admit a Shalika vector. Then γπ,ψ (s) = γπ0,ψ0.

Proof. By Proposition 2.13, π0 admits a Shalika vector if and only if Jπ0,ψ0 (W 0
v , 1) 6= 0,

for some v ∈ V0. Therefore if π0 does not admit a Shalika vector, then Jπ,ψ (s,Wv, Fφ) =

Jπ0,ψ0 (W 0
v , φ) and J̃π,ψ (s,Wv, Fφ) = J̃π0,ψ0 (W 0

v , φ), and therefore γπ,ψ (s) = γπ0,ψ0 . �

4.3. The γ-factor of a level zero supercuspidal representation admitting a Shalika

vector. As in the previous subsection, let π0 be an irreducible cuspidal representation of
GL2m (Fq) and let π be a level zero supercuspidal representation, constructed through π0,
with respect to the central character χ : F ∗ → C. In this subsection, we assume that π0

admits a Shalika vector, and compute the γ-factor of π.

Suppose that v ∈ V0, such that Jπ0,ψ0 (W 0
v , 1) = 1. We choose φ (x) = δ0 (x) =

{
1 x = 0

0 x 6= 0
.

Then φ̂ (x) = 1
qm
, and we have

Jπ,ψ (s,Wv, Fφ) =
χ ($) · q−ms

1− χ ($) · q−ms = χ ($) · q−msL (ms, χ) .
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Since J̃π0,ψ0 (W 0
v , φ) = 1

qm
Jπ0,ψ0 (W 0

v , 1) = 1
qm
, we have

J̃π,ψ (s,Wv, Fφ) =
1

qm
1

1− χ−1 ($) · q−m(1−s) = q−mL
(
m (1− s) , χ−1

)
.

It follows that

γπ,ψ (s) =
qms

qmχ ($)
· L (m (1− s) , χ−1)

L (ms, χ)
.

By choosing φ = 1, it is clear that L (s, π,∧2) = L (ms, χ), and that L (s, π̃,∧2) = L (ms, χ−1).
Therefore επ,ψ (s) = qms

qmχ($)
.

4.4. The modi�ed functional equation. Using the results of the previous subsections,
we obtain a modi�ed functional equation for the Jacquet-Shalika integral over a �nite �eld.
Unlike the functional equation presented in Subsection 2.3 (Theorem 2.6), the modi�ed

equation is valid for all irreducible cuspidal representations of GL2m (Fq), regardless whether
they admit a Shalika vector or not.
Let ψ : Fq → C∗ be a non-trivial character of Fq.

Theorem 4.10. Let π be an irreducible cuspidal representation of GL2m (Fq). Then there
exists a rational function γπ,ψ (s) ∈ C (q−s), such that for every s ∈ C, W ∈ W (π, ψ),
φ ∈ S

(
Fmq
)
, one has

γπ,ψ (s)
(
Jπ,ψ (W,φ) + Jπ,ψ (W, 1) · φ (0) q−msL (ms, 1)

)
=

J̃π,ψ (W,φ) + Jπ,ψ (W, 1) · φ̂ (0) q−m(1−s)L (m (1− s) , 1) .

From this equation alone, one can easily see that if π does not admit a Shalika vector,
then γπ,ψ (s) ∈ C∗, and otherwise

γπ,ψ (s) =
qms

qm
· L (m (1− s) , 1)

L (ms, 1)
.

To show this, one uses Proposition 2.13. If π doesn't admit a Shalika vector, then Jπ,ψ (W, 1) =
0, for every W ∈ W (π, ψ), and we get the same functional equation as in Theorem 2.6. If
π admits a Shalika vector, then there exists W0 ∈ W (π, ψ) such that Jπ,ψ (W0, 1) = 1. One
substitutes W = W0, φ = δ0, as in the previous subsection, to get the above form of γπ,ψ.
Thus the modi�ed functional equation relates between a pole of γπ,ψ (s) and the existence

of a Shalika vector of π in a simple matter.
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Shalikaו Jacquet של האינטגרל של התורה בין קישור ע"י העבודה את מסיימים אנו התורות בין קישור
התוצאות .(depth zero) level zero מסוג חוד הצגות באמצעות p־אדי, שדה ומעל סופי שדה מעל

הבאים: המשפטים הן שלנו העיקריות
,level zero מסוג חוד הצגת π ותהי ,GL2m (Fq) של אי־פריקה חוד הצגת (π0, Vπ0) תהי .(H) משפט

מתקיים ,s ∈ Cו φ ∈ S
(
Fmq
)
,v ∈ Vπ0 לכל אז .π0 דרך שנבנתה

.Jπ,ψ (s,Wv, Fφ) = Jπ0,ψ0

(
W 0
v , φ
)
+ Jπ0,ψ0

(
W 0
v , 1
)
· φ (0)ωπ ($) · q−msL (ms, ωπ)

חוד הצגת לכל נכונה שכעת הפונקציונלית, המשוואה של הבאה הגרסה את מקבלים אנו כמסקנה,
.Shalika וקטור πל יש האם בתנאי תלות ללא ,GL2m (Fq) של π אי־פריקה

מתקיים ,s ∈ Cו φ ∈ S
(
Fmq
)
,W ∈ W (π, ψ) שלכל כך ,γπ,ψ (s) ∈ C (q−s) איבר קיים .(D�) משפט

.Jπ̃,ψ−1

(
π̃

((
Im

Im

))
W̃ , φ̂

)
+ Jπ,ψ (W, 1) · φ̂ (0) · q−m(1−s)L (m (1− s) , 1) =

γπ,ψ (s) ·
(
Jπ,ψ (W,φ) + Jπ,ψ (W, 1) · φ (0) · q−msL (ms, 1)

)

אז ,Shalika וקטור יש πל אם כן, על יתר

.γπ,ψ (s) =
qms

qm
L (m (1− s) , 1)

L (ms, 1)

.γπ,ψ ∈ C∗ אחרת,



מעל Shalikaו Jacquet של לאינטגרל אנלוגית תורה מפתחים אנחנו בנוסף, סופי. שדה מעל התורה
שלנו. העיקריות התוצאות את נפרט כעת .Fq סופי שדה

.GL2m (Fq) של גנרית אי־פריקה הצגה π תהי
ש כך ,φ ∈ S

(
Fmq
)
,W ∈ W (π, ψ) קיימים .(B') משפט

.1 = Jπ,ψ (W,φ) =
1

[GLm (Fq) : N ] [Mm (Fq) : B]
∑

g∈N\GLm(Fq)

∑

X∈B\Mm(Fq)

W

(
wm,m

(
Im X

Im

)(
g

g

))

· ψ (−trX) · φ (εg)

חוד. הצגת π כי מעתה נניח
W ∈ W (π, ψ) שלכל כך ,γπ,ψ ∈ C∗ קבוע קיים אז .Shalika וקטור אין πל כי נניח .(D') משפט

מתקיים ,φ ∈ S
(
Fmq
)
ו

.γπ,ψ · Jπ,ψ (W,φ) = Jπ̃,ψ−1

(
π̃

((
Im

Im

))
W̃ , φ̂

)

.πל המתאים רגולרי כרקטר θ : F∗q2m → C∗ יהי
שקולים: הבאים התנאים .(E') משפט

.Jπ,ψ (W,φ) 6= 0 ש כך ,0 6= W ∈ W (π, ψ) קיים .1

.Shalika וקטור יש πל .2

.θ �F∗qm≡ 1 .3

.m = 1, 2 המקרים עבור ,θ הכרקטר באמצעות γπ,ψ את מבטאים אנחנו
אז .(Shalika וקטור אין πל (כלומר θ �F∗qm 6≡ 1 כי נניח .(G) משפט

,m = ל1 .1

.γ−1π,ψ =
∑

a∈F∗q

ωπ (a) .ψ
F (−a)

,m = ל2 .2

, γ−1π,ψ = T0−
1

q2


∑

a∈F∗q

ωπ (a)ψ
F (−a)







∑

b∈F∗q




∑

ξ∈F∗
q4

NF
q4
/Fq (ξ)=b

2

∑

β∈F∗q

ψ−1
(
β +

1

β
TrFq4/Fq

(
ξ +

b

ξ

))
θ (ξ)







.T0 =

{
q − 1

q
ωπ ≡ 1

0 ωπ 6≡ 1
כאשר



הצגה שלכל ומראים ,LJS (s, π,∧2) = 1
p(q−s) מסמנים Raghunathanו Kewat ,[KR12] במאמרם

ע"י מעלה שנבנתה זו כמו הפונקציה אותה היא LJS (s, π,∧2) ,GL2m (F ) של חלקה גנרית אי־פריקה
לא־מסועפות). להצגות רק זאת מראים Shalikaו Jacquet) Langlands התאמת

לסמן ממשיכים אנו אותה המישור, לכל מרומורפית המשכה יש Jπ,ψ (s,W, φ)ל ,C ממשפט כתוצאה
.Jπ,ψ (s,W, φ)ב

הבאים. המשפטים את מוכיחים אנו חוד. הצגת היא π כי מעתה נניח
מתקיים ,W ∈ W (π, ψ) ,φ ∈ S (Fm) שלכל כך ,γπ,ψ (s) ∈ C (q−s) איבר קיים .(D) משפט

.Jπ̃,ψ−1

(
1− s, π̃

((
Im

Im

))
W̃ , φ̂

)
= γπ,ψ (s) · Jπ,ψ (s,W, φ)

כן, על יתר

, γπ,ψ (s) = επ,ψ (s) ·
L (1− s, π̃,∧2)
L (s, π,∧2)

.C [q−s, qs] של הפיך איבר επ,ψ (s) כאשר
.D משפט את להוכיח כדי [Mat12, Mat14] Matringe של ההוכחה אחר עוקבים אנו

שקולים: הבאים התנאים .(E) משפט

ש כך ,W ∈ W (π, ψ) וקיים ωπ ≡ 1 .1

.lπ,ψ (W ) =

∫

ZN\GLm(F )

∫

B\Mm(F )

W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dXdg 6= 0

.s = ב1 קוטב יש γπ,ψ (s)ל .2

.s = ב0 קוטב יש L (s, π,∧2)ל .3

כבר דומה משפט .D במשפט שנידונה הפונקציונלית המשוואה דרך E משפט את מוכיחים אנחנו
משפט ואת [JNQ08] של ההקדמה את גם (ראו Shahidi של מהבניה המגיעה ∧2 של L לפונקציית ידוע

הנ"ל). המאמר של 5.5
אז לא־מסועף, הוא ωπ אם .L (s, π,∧2) = L (ms, ωπ) = 1 אז מסועף, הוא ωπ אם .(F) משפט

, L
(
s, π,∧2

)
=
∏

k∈Sπ,ψ

1

1− ωπ ($)
1
m ζkq−s

ו ζ = e
2πi
m כאשר

Sπ,ψ =
{
0 ≤ k ≤ m− 1 | ∃W ∈ W (π, ψ) ,

.

∫

ZN\G

(∫

B\M
W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−tr (X)) dX

)
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הקדמה
Lang- מהתאמת .GLn (F ) של אי־פריקה חלקה הצגה π תהי לא־ארכימדי. מקומי שדה F יהי
היא זו הצגה .W ′

F Weil-Delinge חבורת של ,πל המתאימה ρ (π) הצגה קיימת המקומית, lands
L (s, π,∧2) = ע"י זו התאמה דרך מוגדרת ,πל המתאימה ∧2 של המקומית L פונקציית .n ממימד

זוגי. n בו במקרה רק נתעניין אנו .L (s,∧2 (ρ (π)))
להצגות המתאימה ∧2 של הגלובלית L פונקציית את חוקרים Shalikaו Jacquet ,[JS90] במאמרם
Jacquet ,[JS90] של 7 בחלק זוגי. n בו המקרה עבור בעיקר ,GLn של אי־פריקות אוטומורפיות חוד
מצד .GL2m (F ) של מסועפות לא אי־פריקות להצגות ,L (s, π,∧2)ל אינטגרלית הצגה נותנים Shalikaו
,∧2 של המקומית L לפונקציית נוספת פוטנציאלית בניה מציע Shahidi ,7 בחלק [Sha90] במאמרו שני,
בניות ששלוש מראים Raghunathanו Kewat ,[KR12] במאמרם .Langlands-Shahidi methodה דרך
GL2m (F ) של הגנריות האי־פריקות החלקות ההצגות לכל מסכימות, ∧2 של המקומית L לפונקציית אלה

.[KR12, Theorem 1.4]
זו משוואה המתאימה. המקומית הפונקציונלית המשוואה את מוכיח Matringe ,[Mat14] במאמרו
ההוכחה גלובליים. בארגומנטים שימוש ע"י ,[KR12] במאמר Raghunathanו Kewat ע"י כבר מוכחת

מקומיים. בארגומנטים רק שימוש עושה Matringe של
לעיל. שהוזכר Shalikaו Jacquet של האינטגרל של הלא־ארכימדית בתורה עוסקת זו עבודה
אחר עוקבים אנו זו. תורה של הידועות התוצאות אודות סקירה נותנים אנו להלן, A-D במשפטים
שלנו התרומה המקוריות. להוכחות פרטים ומוסיפים ,Matringe ושל Shalikaו Jacquet של ההוכחות

בתחום. למומחים ידועים שאלה שייתכן למרות ,D משפט לאחר המופיעים והמשפטים התורות היא
שנוכיח. העיקריים המשפטים את כעת נציג

.GL2m (F ) של גנרית אי־פריקה חלקה הצגה π תהי p־אדי. שדה F יהי p־אדי. שדה מעל התורה
,φ ∈ S (Fm) ,W ∈ W (π, ψ) ,Re (s) > rπ,∧2 עם s ∈ C שלכל כך ,rπ,∧2 ∈ R קיים .(A) משפט

בהחלט מתכנס הבא האינטגרל

.Jπ,ψ (s,W, φ) =

∫

N\GLm(F )

∫

B\Mm(F )

W

(
wm,m

(
Im X

Im

)(
g

g

))
ψ (−trX) dX · φ (εg) |det g|s dg

,Re (s) > rπ,∧2 עם s ∈ C שלכל כך ,φ ∈ S (Fm) ,W ∈ W (π, ψ) קיימים .(B) משפט

.Jπ,ψ (s,W, φ) = 1

את להוכיח כדי [JS90, Sections 7.1, 7.3] Shalikaו Jacquet של ההוכחות אחר עוקבים אנו
.Bו A משפטים

של איבר היא Jπ,ψ (s,W, φ) הפונקציה קבועים, φ ∈ S (Fm) ,W ∈ W (π, ψ) עבור .(C) משפט
נסמן כן, על יתר המישור. לכל מרומורפית המשכה לה יש ולכן ההתכנסות, בתחום sל ,C (q−s)

, Iπ,ψ = spanC {Jπ,ψ (s,W, φ) | W ∈ W (π, ψ) , φ ∈ S (Fm)}

L (s, π,∧2) = מסמנים .Iπ,ψ = 1
p(q−s)C [q−s, qs]ו p (0) = ש1 כך ,p (z) ∈ C [z] יחיד איבר קיים אז

. 1
p(q−s)





מדויקים למדעים הפקלוטה
סאקלר ובברלי ריימונד ע"ש
המתמטיקה למדעי הספר בית

GL2m של הצגות של γπ,ψ,∧2 (s) גמא פונקציות על

המתמטיקה, למדעי הספר בבית אוניברסיטה" "מוסמך תואר לקבלת מהדרישות כחלק מוגש זה חיבור
אביב תל אוניברסיטת

מאת

זלינגר דניאל אלעד

סודרי דוד פרופ' בהנחיית

תשע"ח תשרי
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